Новый цветовой порядок

 

Но не все эти хитроумные схемы, не оригинальные смешения красок, изобретенные художниками, не новые теории цветового зрения проложили дорогу Ньютону и его революционному открытию. На мой взгляд, главную роль тут сыграли исследования, лежащие в несколько иной области, – работы, посвященные природе радуги.

В XVII веке эта проблема занимает наиболее видных ученых (Галилея, Кеплера, Декарта, Гюйгенса) и даже некоторых теологов. Все они изучают «Метеорологику» Аристотеля, труды арабских оптиков, в частности Ибн аль-Хайсама, и европейских авторов XII века – Роберта Гроссетеста[217], Джона Пэкхэма[218], Роджера Бэкона[219], Дитриха Фрейбергского[220], Витело[221]. Начиная с 1580-х годов работы о радуге появляются все чаще, в них становится все меньше поэтических и метафизических отступлений и рассуждений о символике цветов, которыми последние три века были переполнены трактаты на эту тему; внимание авторов сосредотачивается на вопросах метеорологии, физики и оптики: солнце, облака, капли дождя, кривизна дуги, а главное, отражение и преломление лучей света[222]. По-видимому, Джамбаттиста делла Порта (1535–1615) был первым, кто на серьезном научном уровне продолжил опыты с призмой, когда-то проводившиеся арабскими учеными, и выдвинул более или менее новые гипотезы, объясняющие, почему луч солнца, проходя сквозь стеклянную призму, «рождает» цвета[223]. Другие авторы полемизируют с ним, предлагают иные эксперименты, иные, более новаторские объяснения[224]. И пусть авторы всех этих трактатов, мягко говоря, не придерживаются единого мнения, всех их объединяет страсть к познанию, упорное стремление обосновать свою точку зрения. В частности, они пытаются установить, сколько цветов можно различить в радуге, а затем определить их последовательность. Вслед за учеными Античности и Средневековья[225] они считают, что этих цветов четыре, или пять, или шесть; но никто из них не упоминает о черном. Все ученые объясняют появление радуги эффектом рассеяния, которое претерпевает солнечный свет при прохождении через влагу, среду более плотную, чем обычный воздух. Разногласия наблюдаются преимущественно в таких вопросах, как отражение и преломление света или поглощение световых лучей, их яркость и различные углы падения, а также последовательность цветов в радуге.

А затем на сцену выходит Исаак Ньютон (1642–1727), возможно величайший ученый в мировой истории. В 1665–1666 годах во время вынужденных каникул (из-за вспыхнувшей эпидемии чумы ему приходится уехать из Кембриджа и вернуться к матери в Вулсторп, графство Линкольншир) он за несколько месяцев совершает ряд величайших открытий: в частности, открывает дисперсию цвета и природу спектра, а также закон всемирного тяготения. По Ньютону, цвета представляют собой «объективное» явление; надо оставить в стороне вопросы о нашем видении цвета, поскольку они тесно связаны со зрением (которому, по его мнению, «не стоит доверять») и восприятием, которое находится в слишком большой зависимости от различных культурных контекстов, и сосредоточиться исключительно на проблемах физики. Так он и поступает: вытачивает стеклянные призмы и начинает экспериментировать. В принципе опыты с призмами давно известны, только он проводит их по-своему. Он берет за основу гипотезы своих предшественников, в особенности Декарта[226], утверждавшего, что цвет – не что иное, как свет, который, распространяясь и встречая на своем пути предметы, претерпевает различные физические изменения. Ньютона не волнует вопрос, бурно обсуждаемый его современниками: является ли природа света волновой либо корпускулярной[227]. Для него важнее другое: наблюдать за модификациями света, дать им определения и, если возможно, измерить их. После многочисленных опытов с призмами он обнаруживает, что белый солнечный свет при этом не ослабевает и не тускнеет, но образует цветное пятно удлиненной формы, в котором он распадается, образуя несколько лучей неравной длины. Эти лучи формируют некую хроматическую последовательность, всегда одну и ту же – спектр. Причем этот процесс обратим: белый солнечный свет можно не только разложить на цветные лучи, но и восстановить из них заново. Этим Ньютон доказывает: порождая цвета, свет не теряет часть своей силы, а остается тем же, чем был, – результатом слияния разноцветных лучей в одно целое. Открытие Ньютона было поистине великим. Отныне свет и цвета, которые в нем заключены, можно будет распознавать и воспроизводить, укрощать и измерять[228].

Эти идеи, ставшие поворотным моментом не только в истории цветов (в частности, черного, который в новой системе отсутствует), но и в истории науки в целом, получили признание далеко не сразу. И прежде всего потому, что сам ученый хранил их в секрете шесть лет и лишь потом предал гласности, но постепенно, в несколько этапов, начиная с 1672 года. Только в его суммарном труде по оптике, опубликованном на английском языке в 1704 году[229] и включавшем в себя материалы всех его предыдущих работ, научный мир смог наконец полностью ознакомиться с его теориями о свете и цветах. Ньютон объясняет, каким образом белый свет составляется из совокупности разноцветных лучей, как, проходя сквозь призму, вновь распадается на лучи разного цвета, всегда одни и те же, состоящие из крохотных материальных частиц, обладающих громадной скоростью, притягиваемых или отталкиваемых предметами. Тем временем другие ученые, и прежде всего Карл Гюйгенс (1629–1695), успели провести свои исследования и доказали, что свет имеет скорее волновую природу, чем корпускулярную[230]. Однако работа Ньютона имела триумфальный успех и, чтобы обеспечить ей еще более широкое распространение, ее сразу же перевели на латинский язык[231]. Ньютон, гениальный ученый, честно признавался, что не смог найти решение для всех поставленных им проблем и оставил потомству тридцать загадок, которые еще предстоит решить.

Было одно обстоятельство, которое вредило популярности его открытий и в течение десятков лет приводило к досадным недоразумениям: он пользовался профессиональной терминологией живописцев, но при этом придавал словам другие значения. Например, определение «первичные цвета» (primary, primitive) имело для него особый смысл и подразумевало не только три цвета (красный, синий и желтый), как в профессиональном языке художников второй половины XVII века. В результате – путаница и неверное прочтение; так было в XVII веке и все еще продолжалось век спустя: подтверждение можно найти в трактате Гете «К теории цвета», написанном через столетие. Кроме того, Ньютон не мог с полной уверенностью назвать точное количество разноцветных лучей, на которые разбивался луч света, проходя сквозь призму; ученый несколько раз менял свое мнение и за это подвергся нападкам. Его критики иногда бывали не вполне добросовестны[232], однако он и сам признавался, что так и не пришел к окончательному выводу. В первое время (в конце 1665 года) он считал, что спектр содержит пять цветов: красный, желтый, зеленый, синий и фиолетовый. Затем, в 1671–1672 годах, он добавил к этим пяти еще два, оранжевый и индиго, чтобы получилась «седмица»: он рассчитывал, что в этом случае его идеи встретят большее понимание и не будут отталкивать консервативных читателей, которые привыкли к хроматической гамме из семи цветов. Сам он сравнивал свой спектр с музыкальной гаммой, состоящей из семи нот. Впоследствии его за это критиковали; впрочем, Ньютон уточнял, что разделение спектра на семь цветов – условное и искусственное, что на самом деле речь идет о цветовом континууме, который можно разделить на части как-то иначе и увидеть в нем гораздо большее число цветов. Но было уже поздно: спектр, а с ним и радуга стали прочно ассоциироваться с семью цветами.

Но для историка цвета все это не главное. Главное – это новый хроматический порядок, созданный Ньютоном; порядок, который не имел прецедентов в прошлом, базировался на совершенно новой хроматической последовательности и до сих пор остается базовой научной классификацией цветов: фиолетовый, индиго, синий, зеленый, желтый, оранжевый, красный. Прежний, традиционный порядок цветов нарушен: красный теперь находится не в центре, а с краю; зеленый занимает место между желтым и синим, подтверждая то. что живописцы и красильщики доказали на практике еще много лет назад: чтобы получить зеленую краску, надо смешать желтую с синей. И, наконец, в этом новом хроматическом порядке нет больше места ни для черного, ни для белого. Это революция: черный и белый перестали быть цветами. Причем черный даже в большей степени, чем белый. Ведь белый – основа спектра, поскольку заключает в себе все его цвета. А черный окончательно выведен за рамки хроматической системы, выброшен из цветового мира.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: