Разделение аминокислот методом хроматографии на бумаге

Лабораторное занятие №7. Строение и функции биополимеров.

Методы разделения и очистки биомолекул.

Разделение аминокислот методом хроматографии на бумаге

Известно, что основоположник хроматографии М. С. Цвет (1872 – 1919) разделил экстракт пигментов растений (1903) по их сорбции на колонке каолина = белой глины. Т.к. в потоке элюента = жидкости, фильтрующейся через носитель, скорости движения компонентов разделяемых смесей обратны степени их сорбции, Arne Tiselius (1902 – 1971, Швеция) предложил термин «сорбционный анализ» и, стал делить смеси, в зависимостиот времени прохождения элюента через колонку или тонкий слой сорбента с развитой поверхностью.

Теоретические основы ионообменной, адсорбционной, распределительной и других видов хроматографии рассмотрены в курсах аналитической и физической химии. Но, т.к. при делении биомолекул, часто одновременно реализуется несколько механизмов, то, не вдаваясь в типы носителей, отметим, что геометрия сорбционного слоя и зависящее от него аппаратное оформление неподвижной фазы, дали ряд вариантов хроматографии (рис 1).

 

Рис. 1. Схема методов хроматографии

 

При плоскостных методах, 1-10 мкл смеси разделяемых веществ наносят на бумагу или тонкий слой сорбента, закрепленный на стекле или фольге. Носитель помещают во влажную, чаще стеклянную камеру с элюентом - смесью двух частично смешивающихся жидкостей. За десятки минут элюент перемещается по сорбенту под действием капиллярных сил и гравитации. При этом одна из жидкостей фиксируется на сорбенте, образуя неподвижную фазу, а другая – подвижная, проходит по нему с большей скоростью. В соответствии со степенью растворимости в той или иной части элюента, компоненты смеси распределяются по хроматограмме.

Независимо от принципа деления компонентов, колоночная хроматография возможна вручную, но гораздо удобней специальные приборы – хроматографы. Обычно, при помощи насоса на вход их колонок подают, как разделяемую смесь, так и элюент. А на выходе – размещают детектор, который, независимо от конструкции, в автоматическом режиме непрерывно отражает на диаграмме регистрации = хроматограмме, время выхода и концентрации компонентов в элюате. Варианты колоночной хроматографии (рис. 1) отличаются друг от друга не так диаметром, длиной колонки и типом носителя, как очередностью подачи в нее элюента и разделяемой смеси. Преимущество проявительной хроматографии состоит в том, что колонка не требует регенерации, а зоны компонентов анализируемой смеси – разделяются слоями элюата.

Из таблицы 1 видно, что в соответствии с агрегатным состоянием подвижной фазы, различают газо-жидкостную = ГЖХ и жидкостную хроматографию. Последняя – наиболее разнообразна, т.к. включает в себя фильтрацию в гелях, аффинную и высокоэффективную жидкостную хроматографию = ВЭЖХ, больше известную как HPLC = High pressure liquid chromatography, то есть хроматография под давлением. Т.о., все разнообразие методов хроматографии, как совокупности научных и производственных технологий в разных областях химии, медицины, экологии и т.д., основано на различиях в скоростях движения концентрационных зон компонентов изучаемых смесей, смещающихся относительно сорбента в потоке подвижной фазы.

Таблица 1

Фазовые отношения в хроматографии

 Дополнительная литература

1. Справочник по физико-химическим методам исследования

объектов окружающей среды. Под ред. Г. И. Арановича и др. – Л.: Судостроение, 1979. – 648 с.

2. Лабораторное руководство по хроматографическим и смеж-ным методам в 2-х тт. / Под ред. В. Г. Берёзкина. – М.: Мир, 1982.

3. Остерман Л. А. Хроматография белков и нуклеиновых кислот. – М.: Наука, 1985. – 534 с.

4. Аффинная хроматография. Методы. – М.: Мир, 1988. – 278 с.

5. Зеленин К. Н. и др. Нобелевские премии по химии за 100 лет. – СПб.: Гуманистика, 2003. – 218 с.

6. http://www.krugosvet.ru/articles/114/1011465/print.htm

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: