Время кругооборота крови

I

 Время полного кругооборота крови — это время, необходимое для того, чтобы она прошла через большой и малый круг кровообращения.

Для измерения времени полного кругооборота крови применяют ряд способов, принцип которых заключается в том, что в вену вводят ка­кое-либо безвредное вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одно­именной вене другой стороны. Скорость кругооборота (или только в ма­лом, или только в большом круге) определяют при помощи радиоактивно­го изотопа натрия и счетчика электронов. Для этого несколько таких счет­чиков помещают на разных частях тела вблизи крупных сосудов и в облас­ти сердца. После введения в локтевую вену радиоактивного изотопа на­трия определяют время появления радиоактивного излучения в области сердца и исследуемых сосудов.

Время полного кругооборота крови у человека составляет в среднем 27 систол сердца. При ЧСС 70—80 уд/мин кругооборот крови происходит приблизительно за 20—23 с, однако скорость движения крови по оси сосу­да больше, чем у его стенок. Поэтому не вся кровь совершает полный кру­гооборот так быстро и указанное время является минимальным.

Исследования показали, что % времени полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения и % — по большому.

6.2.3. Регуляция движения крови по сосудам

Каждая клетка, ткань и орган нуждаются в кислороде и питательных веществах в количестве, соответствующем их метаболизму, т.е. интенсив­ности их функции. В связи с этим тканям необходимо поступление строго определенного количества крови в единицу времени, обеспечивающей до­ставку кислорода и питательных веществ. Эта потребность достигается благодаря поддержанию постоянного уровня АД и одновременно непре­рывного перераспределения протекающей крови между всеми органами и тканями в соответствии с их потребностями в каждый данный момент.

Механизмы, регулирующие кровообращение, можно подразделить на две. кате гори и: 1) центральные, определяющие величину АД и системное кровообращение, и 2) местные, контролирующие величину кровотока че­рез отдельные органы и ткани. Хотя такое разделение является удобным, оно в значительной мере условно, так как процессы местной регуляции осуществляются с участием центральных механизмов, а управление сис­темным кровообращением зависит от деятельности местных регуляторных механизмов.

Постоянство АД сохраняется благодаря непрерывному поддержанию точного соответствия между величиной сердечного выброса и величиной общего периферического сопротивления сосудистой системы, которое за­висит от тонуса сосудов.

Гладкие мышцы сосудов постоянно, даже после устранения всех внеш­них нервных и гуморальных регуляторных влияний, находятся в состоя­нии исходного (базального) тонуса, обусловленного местными механизма­ми. Кроме того, гладкие мышцы сосудистых стенок находятся под влия­нием постоянной тонической импульсации, поступающей по волокнам 320


симпатических нервов. Симпатические влияния формируются в сосудо­двигательном центре и поддерживают определенную степень сокращения гладкой мускулатуры сосудов.

Иннервация сосудов

Сужение артерий и артериол, снабженных преимущественно симпати­ческими нервами (вазоконстрикция), было впервые обнаружено А.П. Валь­тером (1842) в опытах на лягушках, а затем К. Бернаром (1852) в экспери­ментах на ухе кролика. Классический опыт Бернара состоит в том, что пе­ререзка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющееся покраснением и потеплением уха оперированной стороны. Если раздражать периферический конец симпа­тического нерва на шее, то ухо на стороне раздражаемого нерва бледнеет вследствие сужения его артерий и артериол, а температура понижается.

Главными сосудосуживающими нервами органов брюшной полости яв­ляются симпатические волокна, проходящие в составе внутренностного нерва (n. splanchnicus). После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосуживающей симпатической иннерва­ции, резко увеличивается вследствие расширения артерий и артериол. При раздражении n. splanchnicus сосуды желудка и тонкой кишки суживаются.

Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий — в их адвентициальной оболочке. Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влиянием симпатических нервов.

Чтобы восстановить нормальный тонус артерий после перерезки сим­патических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в 1 с. Увеличение частоты сти­муляции может вызвать сужение артериальных сосудов.

Сосудорасширяющие эффекты (вазодилатация) впервые обнаружили при раздражении нескольких нервных веточек, относящихся к парасимпа­тическому отделу автономной нервной системы. Например, раздражение барабанной струны (chorda tympani) вызывает расширение сосудов нижне­подчелюстной и подъязычной желез и языка, n. cavernosi penis — расшире­ние сосудов пещеристых тел полового члена.

В некоторых органах, например в скелетной мускулатуре, расширение артерий и артериол происходит при раздражении симпатических нервов, в составе которых имеются, кроме вазоконстрикторов, и вазодилататоры. При этом активация а-адренорецепторов приводит к констрикции сосу­дов. Активация p-адренорецепторов, наоборот, вызывает вазодилатацию. Следует заметить, что p-адренорецепторы обнаружены не во всех органах.

Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувствительные) волокна. Эти факты, обнаруженные в 70-х годах XX столетия, вызвали среди физиоло­гов много споров. Согласно теории Бейлиса и Л.А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному со­суду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в


спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней проводимостью («ак­сон-рефлекс»).

Согласно другой точке зрения, расширение сосудов кожи при раздра­жении задних корешков происходит вследствие того, что в рецепторных нервных окончаниях образуются ацетилхолин и гистамин, которые диф­фундируют по тканям и расширяют близлежащие сосуды.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: