Гидравлика. Исторические сведенья

Гидравлика как науки начинает формироваться с середины XV века, когда Леонардо да Винчи лабораторными опытами положил начало экспериментальному методу в гидравлике. В XVI--XVII веках С.Стевин, Г. Галилей и Б. Паскаль разработали основы гидростатики как науки, а Э.Торричелли дал известную формулу для скорости жидкости, вытекающей из отверстия. Так же некоторые принципы гидростатики были установлены ещё Архимедом, возникновение гидродинамики так же относится к античному периоду.

В XVIII веках Д.Бернулли и Л.Эйлер разработали общие уравнения движения идеальной жидкости, послужившие основой для дальнейшего развития гидравлики. К этому же периоду относятся исследования Н.Е.Жуковского, из которых для гидравлики наибольшее значение имели работы о гидравлическом ударе и о движении грунтовых вод.

В XX веке гидротехника, теплоэнергетика,гидромашиностроение, а также авиационная техника привёла к интенсивному развитию гидравлику. Большой вклад в развитие науки сделали советские учёные -- Н.Н.Павловский, Л.С. Лейбензон, М.А. Великанова и др. Если ранее в гидравлике изучалась лишь одна жидкость -- вода, то в современных условиях всё большее внимание уделяется изучению закономерностей движения вязких жидкостей (нефти и её продуктов), газов, неоднородных и неньютоновских жидкостей. Меняются и методы исследования и решения гидравлических задач.

Сравнительно недавно в гидравлике основное место отводилось чисто эмпирическим зависимостям, справедливым только для воды и часто лишь в узких пределах изменения скоростей, температур, геометрических параметров потока; теперь всё большее значение приобретают закономерности общего порядка, действительные для всех жидкостей, отвечающие требованиям теории подобии. При этом отдельные случаи могут рассматриваться как следствие обобщенных закономерностей. Постепенно гидравлика превращается в один из прикладных разделов общей науки о движении жидкостей.

Гидравлика, как прикладная наука, применяется для решения различных инженерных задач в области:

- Водоснабжение и водоотведения (канализации);

- транспортировка веществ по трубопроводу: газ, нефть и т. п.;

- строительства различных гидротехнических сооружений, водозаборных сооружений;

конструирования различных устройств, машин, механизмов:

- насосов;

- компрессоров;

- демпферов;

- амортизаторов;

- гидравлических прессов;

- гидравлических приводов;

- медицины.

Гидравлика подразделяется:

- Теоретические основы гидравлики, где излагаются важнейшие положения учения о равновесии и движении жидкостей,

- Практическая гидравлика, применяющая эти положения к решению частных вопросов инженерной практики.

Основные разделы практической гидравлики:

- Гидравлика трубопроводов -- течение по трубам;

- Гидравлика открытых русел (динамика русловых потоков) -- течение в каналах и реках;

- истечение жидкости из отверстия и через водосливы;

- гидравлическая теория фильтрации даёт методы расчёта дебита и скорости течения воды в различных условиях безнапорного и напорного потоков (фильтрация воды через плотины, фильтрация нефти, газа и воды в пластовых условиях, фильтрация из каналов, приток к грунтовым колодцам);

- гидравлика сооружений -- взаимодействие потока и твёрдого преграждения.

Во всех указанных разделах движение жидкости рассматривается как установившееся, так и неустановившееся (нестационарное).

Основные разделы теоретической гидравлики:

- Гидростатика;

- Гидродинамика;

- Кинематическая гидравлика.

В гидростатике рассматриваются законы равновесия жидкостей, в гидродинамике -- законы их движения.

Основные понятия и формулы и гидростатики

Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости и их практическое применение.

В отличие от твёрдого тела, жидкость не «держит» сдвиговое напряжения. Поэтому в жидкости не может существовать анизотропии напряжений, а значит напряжения в жидкости описываются единственной величиной -- давлением. Отсюда вытекает закон Паскаля: давление, оказываемое на жидкость, передаётся жидкостью одинаково во всех направлениях.

Основной закон гидростатики для толщи жидкости -- зависимость давления от глубины, который для несжимаемой жидкости в однородном поле тяжести имеет вид:. Из этого закона следует равенство уровней в сообщающихся сосудах, закон Архимеда: на тело, погружённое в жидкость, действует выталкивающая сила:

где -- плотность жидкости, а -- объём тела, погруженного в жидкость.

Основным уравнением гидростатики:

P = P0 + сgh = P0 + hг

По нему можно посчитать давление в любой точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления P0 на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев жидкости.

Из основного уравнения гидростатики видно, что какую бы точку в объеме всего сосуда мы не взяли, на нее всегда будет действовать давление, приложенное к внешней поверхности P0. Другими словами давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково.

2.Жидкости. Гипотеза сплошности. Плотность жидкости

Жидкости. Жидкость - физическое тело, обладающее свойством текучести, т.е. способностью неограниченно изменять свою форму под действием даже весьма малых сил, но в отличие от газов практически не изменяющее свой объем при изменении давления.

В обычном состоянии жидкость оказывает малое сопротивление разрыву и большое сопротивление сжатию (имеет малую сжимаемость). Вместе с тем жидкость оказывает значительное сопротивление относительному движению соседних слоев (обладает вязкостью). В понятие «жидкость» включают как жидкости обычные, называемые капельными, так и газы, когда их можно считать как сплошную малосжимаемую легкоподвижную среду.

В гидравлике рассматривают только капельные жидкости. К ним относятся вода, нефть, керосин, бензин, ртуть и др.

Газообразные жидкости - воздух и другие газы - в обычном состоянии капель не образуют. Основной особенностью капельных жидкостей является то, что в большинстве случаев их рассматривают как несжимаемые.

Гипотеза сплошности. Жидкость рассматривается как деформируемая система материальных частиц, непрерывно заполняющих пространство, в котором она движется.

Жидкая частица представляет собой бесконечно малый объем, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3-1013 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся жидкостью.

При таком предположении жидкость в целом рассматривается как континуум - сплошная среда, непрерывно заполняющая пространство, т.е. принимается, что в жидкости нет пустот или разрывов, все характеристики жидкости являются непрерывными функциями, имеющими непрерывные частные производные по всем своим аргументам. Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости.

Правомерность применения модели жидкости - сплошная среда подтверждена всей практикой гидравлики.

Плотность жидкости. Плотность характеризует распределение массы М жидкости по объему W. В произвольной точке А жидкости плотность

(1.1)

где: ДM - масса, заключенная в объеме ДW, стягиваемом в точку А.

Плотность однородной жидкости:

с =M/W (1.2) (кг/м3)

Плотность с во всех точках однородной жидкости одинакова.

В общем случае плотность может изменяться от точки к точке в объеме, занятом жидкостью, и в каждой точке объема с течением времени.

Удельный вес у однородной жидкости определяется:

у = G/W (Н/м3).

Учитывая, что G = Mg, получим зависимость, используемую в расчетах:

y = сg.

Отметим, что значение ускорения свободного падения g изменяется от 9,831 м/с2 (на полюсе) до 9,781 м/с2 (на экваторе).

Плотность жидкостей и газов зависит от температуры и давления. Все жидкости, кроме воды, характеризуются уменьшением плотности с ростом температуры. Плотность воды максимальна при t = 4°C и уменьшается как с уменьшением, так и увеличением температуры от этого значения. В этом проявляется одно из аномальных свойств воды. При изменении давления плотность жидкостей изменяется незначительно. Температура, при которой плотность воды максимальная, с увеличением давления уменьшается.

3.Силы, действующие в жидкости

Поскольку жидкость обладает свойством текучести и легко деформируется под действием минимальных сил, то в жидкости не могут действовать сосредоточенные силы, а возможно существование лишь сил распределённых по объёму (массе) или по поверхности. По характеру действия силы можно разделить на две категории: массовые силы и поверхностные.

Массовые силы пропорциональны массе тела и действуют на каждую жидкую частицу этой жидкости. К категории массовых сил относятся силы тяжести и силы инерции переносного движения. Величина массовых сил, отнесённая к единице массы жидкости, носит название единичной массовой силы. Таким образом, в данном случае понятие о единичной массовой силе совпадает с определением ускорения. Если жидкость, находится под действием только сил тяжести, то единичной силой является ускорение свободного падения:

где М' - масса жидкости

Если жидкость находится в сосуде, движущимся с некоторым ускорением а, то жидкость в сосуде будет обладать таким же ускорением (ускорением переносного движения):

Поверхностные силы равномерно распределены по поверхности и пропорциональны площади этой поверхности. Эти силы, действуют со стороны соседних объёмов жидкой среды, твёрдых тел или газовой среды. В общем случае поверхностные силы имеют две составляющие нормальную и тангенциальную. Единичная поверхностная сила называется напряжением. Нормальная составляющая поверхностных сил называется силой давления Р, а напряжение (единичная сила) называется давлением:

где: S - площадь поверхности.

Напряжение тангенциальной составляющей поверхностной силы Т (касательное напряжение) определяется аналогичным образом (в покоящейся жидкости Т=0).

4.Основные свойства жидкости.

1. Плотность () - отношение массы жидкости к занимаемому объему:

2. Удельный вес ()- это вес единицы объема, т.е. где - вес жидкости в объеме V. Между удельным весом и плотностью можно найти связь, если учесть что G=mg:

3. Температурное расширение.

Характеризируется температурным коэффициентом объемного расширения, представляющим собой относительное изменение объема жидкости при изменении температуры на.

4. Вязкость - свойство жидкости оказывать сопротивление относительному движению (сдвигу) ее слоев. Это свойство проявляется в том, что в жидкости при ее движении между слоями возникают касательные напряжения.

При течении вязкой жидкости вдоль твердой стенки происходит торможение потока, обусловленное вязкостью. Скорость U уменьшается по мере уменьшения расстояния y от стенки.

где: коэффициент динамической вязкости жидкости;

-приращение скорости, соответствующее приращению координаты.

Градиент скорости характеризует интенсивность сдвига жидкости в данной точке, коэффициент - вязкость капельных жидкостей и имеет Нс/м2 (Па•с).

На практике наиболее часто используется коэффициент кинематической вязкости:

().

5. Сжимаемость - свойство жидкости изменять свой объем под действием давления. Сжимаемость жидкости характеризуется коэффициентом объемного сжатия, который определяется по формуле:

где: V - первоначальный объем жидкости,

dV - изменение этого объема, при увеличении давления на величину dP. Величина обратная вV называется модулем объемной упругости жидкости:

Модуль объемной упругости не постоянен и зависит от давления и температуры. При гидравлических расчетах сжимаемостью жидкости обычно пренебрегают и считают жидкости практически несжимаемыми. Сжатие жидкостей в основном обусловлено сжатием растворенного в них газа. Сжимаемость понижает жесткость гидропривода, т.к., на сжатие затрачивается энергия. Сжимаемость может явиться причиной возникновения автоколебаний в гидросистеме, создает запаздывание в срабатывании гидроаппаратуры и исполнительных механизмах. Иногда сжимаемость жидкостей полезна - ее используют в гидравлических амортизаторах и пружинах.

5.Измерения давления

Для измерения давления используют жидкостные (барометр, пьезометр, вакуумметр, дифманометр), механические (манометр, вакуумметр) и электрические приборы.

1. Барометр состоит из открытой чашки, заполненной ртутью, и стеклянной трубки, верхний конец которой запаян, а нижний опущен в чашку под уровень ртути. В верхней части трубки воздуха нет, поэтому в ней действует давление насыщенных паров ртути. Значение атмосферного давления определяют по формуле:

где: - плотность ртути;

- высота подъема жидкости в трубке.

2. Пьезометр - это прибор для измерения небольших давлений в жидкости при помощи высоты столба этой жидкости. Он состоит из вертикальной стеклянной трубки, верхний конец которой открыт и сообщается с атмосферой, а нижний присоединен к сосуду, в котором измеряют давление. По основному уравнению гидростатик:.

3. Вакуумметр - это U-образная стеклянная трубка, в колене которой имеется жидкость, тяжелее от той, которая находится в сосуде. Один конец трубки соединен с сосудом, а второй открыт. Давление на свободной поверхности жидкости, если трубка присоединена выше этой поверхности, вычисляют по формуле:

4. Пружинный манометр состоит из корпуса 5, штуцера 6, манометрической (пружинной) трубки 4, передающего механизма 3, стрелки 2 и шкалы 1. Жидкость под давлением попадает в штуцер, а затем в трубку. Под действием давления трубка разгибается и перемещается ее свободный конец, связанный со стрелкой прибора.

6.Основные понятия и формулы гидродинамики

Гидродинамика - раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

Живым сечением щ (мІ) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение

Рис. Живые сечения: а - трубы, б - клапана трубы - круг; живое сечение клапана - кольцо с изменяющимся внутренним диаметром.

Смоченный периметр ч ("хи") - часть периметра живого сечения, ограниченное твердыми стенками.

Для круглой трубы:

Расход потока Q - объем жидкости V, протекающей за единицу времени t через живое сечение щ:

Средняя скорость потока х - скорость движения жидкости, определяющаяся отношением расхода жидкостиQ к площади живого сечения щ:

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R - отношение живого сечения к смоченному периметру.

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени.

х = f(x, y, z)

P = ц f(x, y, z)

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

х = f1(x, y, z, t)

P = ц f1(x, y, z, t)

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока - трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.

Рис. Линия тока и струйка

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное - течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением. Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q1=Q2= const, откуда: щ1х1 = щ2х2

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

Трубопроводы

Классификация трубопроводов

По своему назначению трубопроводы различаются:

- газопроводы,

- нефтепроводы,

- водопроводы, воздухопроводы,

- продуктопроводы.

По виду движения по ним жидкостей трубопроводы можно разделить на две категории:

- напорные трубопроводы,

- безнапорные (самотёчные) трубопроводы.

Также трубопроводы можно подразделить по виду сечения:

- на трубопроводы круглого

- не круглого сечения (прямоугольные, квадратные и другого профиля).

Трубопроводы можно разделить и по материалу, из которого они изготовлены:

- стальные трубопроводы

- бетонные

- пластиковые и др.

Дать полную и исчерпывающую классификацию трубопроводов вряд ли удастся из-за многообразия их функций и областей использования. Нас будут интересовать лишь те классификации, которые влияют на принятые методы и способы описания движения по ним жидкостей и газов.

В практике трубопроводы делятся на короткие и длинные. К первым относятся все трубопроводы, в которых местные потери напора превышают 5…10% потерь напора по длине. При расчетах таких трубопроводов обязательно учитывают потери напора в местных сопротивлениях. К ним относят, к примеру, маслопроводы объемных передач.

Ко вторым относятся трубопроводы, в которых местные потери меньше 5…10% потерь напора по длине. Их расчет ведется без учета местных потерь. К таким трубопроводам относятся, например, магистральные водоводы, нефтепроводы.

Учитывая гидравлическую схему работы длинных трубопроводов, их можно разделить также на простые и сложные. Простыми называются последовательно соединенные трубопроводы одного или различных сечений, не имеющих никаких ответвлений. К сложным трубопроводам относятся системы труб с одним или несколькими ответвлениями, параллельными ветвями и т.д. К сложным относятся и так называемые кольцевые трубопроводы.

7.Простой трубопровод

Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод.

Это трубопровод, собранный из труб одинакового диаметра и качества его внутренних стенок, в котором движется транзитный поток жидкости.

Жидкость по трубопроводу движется благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может создаваться несколькими способами: работой насоса, разностью уровней жидкости, давлением газа.

Рассмотрим простой трубопровод постоянного сечения, который расположен произвольно в пространстве (рис.), имеет общую длину l и диаметр d, а также содержит ряд местных сопротивлений (вентиль, фильтр и обратный клапан). В начальном сечении трубопровода 1-1 геометрическая высота равна z1 и избыточное давление Р1, а в конечном сечении 2-2 - соответственно z2 и Р2. Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна н.

Запишем уравнение Бернулли для сечений 1-1 и 2-2. Поскольку скорость в обоих сечениях одинакова и б1 = б2, то скоростной напор можно не учитывать. При этом получим

или

Пьезометрическую высоту, стоящую в левой части уравнения, назовем потребным напором Нпотр. Если же эта пьезометрическая высота задана, то ее называют располагаемым напором Нрасп. Такой напор складывается из геометрической высоты Hпотр, на которую поднимается жидкость, пьезометрической высоты в конце трубопровода и суммы всех потерь напора в трубопроводе.

Назовем сумму первых двух слагаемых статическим напором, который представим как некоторую эквивалентную геометрическую высоту

а последнее слагаемое Уh - как степенную функцию расхода: Уh = KQm тогда

Hпотр = Hст + KQm

где K - величина, называемая сопротивлением трубопровода;

Q - расход жидкости;

m - показатель степени, который имеет разные значения в зависимости от режима течения.

Для ламинарного течения при замене местных сопротивлений эквивалентными длинами сопротивление трубопровода равно

где lрасч = l + lэкв.

Численные значения эквивалентных длин lэкв для различных местных сопротивлений обычно находят опытным путем. Для турбулентного течения, используя формулу Вейсбаха-Дарси, и выражая в ней скорость через расход, получаем:

По этим формулам можно построить кривую потребного напора в зависимости от расхода. Чем больше расход Q, который необходимо обеспечить в трубопроводе, тем больше требуется потребный напор Нпотр. При ламинарном течении эта кривая изображается прямой линией, при турбулентном - параболой с показателем степени равном двум.

Крутизна кривых потребного напора зависит от сопротивления трубопровода K и возрастает с увеличением длины трубопровода и уменьшением диаметра, а также с увеличением местных гидравлических сопротивлений.

Рис. Зависимости потребных напоров от расхода жидкости в трубопроводе

Величина статического напора Нст положительна в том случае, когда жидкость движется вверх или в полость с повышенным давлением, и отрицательна при опускании жидкости или движении в полость с пониженным давлением. Точка пересечения кривой потребного напора с осью абсцисс (точка А) определяет расход при движении жидкости самотеком. Потребный напор в этом случае равен нулю.Иногда вместо кривых потребного напора удобнее пользоваться характеристиками трубопровода. Характеристикой трубопровода называется зависимость суммарной потери напора (или давления) в трубопроводе от расхода: Уh = f(q)

8.Соединения простых трубопроводов

Простые трубопроводы могут соединяться между собой, при этом их соединение может быть последовательным или параллельным.

Последовательное соединение. Возьмем несколько труб различной длины, разного диаметра и содержащих разные местные сопротивления, и соединим их последовательно

При подаче жидкости по такому составному трубопроводу от точки М к точке N расход жидкости Q во всех последовательно соединенных трубах 1, 2 и 3 будет одинаков, а полная потеря напора между точками М и N равна сумме потерь напора во всех последовательно соединенных трубах. Таким образом, для последовательного соединения имеем следующие основные уравнения:

Q1 = Q2 = Q3 = Q

УhM-N = Уh1 + Уh2 + Уh3

Параллельное соединение. Такое соединение показано на рис. 6.4, а. Трубопроводы 1, 2 и 3 расположены горизонтально.

Рис. Параллельное соединение трубопроводов

Обозначим полные напоры в точках М и N соответственно HM и HN, расход в основной магистрали (т.е. до разветвления и после слияния) - через Q, а в параллельных трубопроводах через Q1, Q2 и Q3; суммарные потери в этих трубопроводах через У1, У2 и У3.

Очевидно, что расход жидкости в основной магистрали: Q = Q1 = Q2 = Q3

Выразим потери напора в каждом из трубопроводов через полные напоры в точках М и N: Уh1 = HM - HN; Уh2 = HM - HN; Уh3 = HM - HN

Отсюда делаем вывод, что Уh1 = Уh2 = Уh3 т.е. потери напора в параллельных трубопроводах равны между собой. Их можно выразить в общем виде через соответствующие расходы следующим образом Уh1 = K1Q1m; Уh2 = K2Q2m; Уh3 = K3Q3m, где K и m - определяются в зависимости от режима течения.

Разветвленное соединение. Разветвленным соединением называется совокупность нескольких простых трубопроводов, имеющих одно общее сечение - место разветвления (или смыкания) труб.

Пусть основной трубопровод имеет разветвление в сечении М-М, от которого отходят, например, три трубы1, 2 и 3 разных диаметров, содержащие различные местные сопротивления. Геометрические высоты z1, z2 и z3 конечных сечений и давления P1, P2 и P3 в них будут также различны. Так же как и для параллельных трубопроводов, общий расход в основном трубопроводе будет равен сумме расходов в каждом трубопроводе:

Q = Q1 = Q2 = Q3

Записав уравнение Бернулли для сечения М-М и конечного сечения, например первого трубопровода, получим (пренебрегая разностью скоростных высот)

Обозначив сумму первых двух членов через Hст и выражая третий член через расход, получаем:

HM = Hст 1 + KQ1m

Аналогично для двух других трубопроводов можно записать:

HM = Hст 2 + KQ2m

HM = Hст 3 + KQ3m

Таким образом, получаем систему четырех уравнений с четырьмя неизвестными: Q1, Q2 и Q3 и HM.

Сложные трубопроводы

Сложный трубопровод в общем случае составлен из простых трубопроводов с последовательным и параллельным их соединением  или с разветвлениями.

Сложный кольцевой трубопровод. Представляет собой систему смежных замкнутых контуров, с отбором жидкости в узловых точках или с непрерывной раздачей жидкости на отдельных участках.

Трубопроводы с насосной подачей жидкостей

Перепад уровней энергии, за счет которого жидкость течет по трубопроводу, может создаваться работой насоса, что широко применяется в машиностроении.

Трубопровод с насосной подачей жидкости может быть разомкнутым, т.е. по которому жидкость перекачивается из одной емкости в другую (рис. 6.8, а), или замкнутым (кольцевым), в котором циркулирует одно и то же количество жидкости.

9.Гидравлический удар

Гидравлическим ударом называется резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока рабочей жидкости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления, которое связано с упругими деформациями жидкости и стенок трубопровода. Гидравлический удар чаще всего возникает при резком открытии или закрытии крана или другого устройства, управляемого потоком. Пусть в конце трубы, по которой движется жидкость со скоростью х0, произведено мгновенное закрытие крана.

При этом скорость частиц, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается в соответствии с увеличением давления на величину ДPуд, которое называется ударным. Область (сечение n - n), в которой происходит увеличение давления, называется ударной волной. Ударная волна распространяется вправо со скоростью c, называемой скоростью ударной волны.

Когда ударная волна переместится до резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы - растянутыми. Ударное повышение давления распространится на всю длину трубы (рис., б).

Далее под действием перепада давления ДPуд частицы жидкости устремятся из трубы в резервуар, причем это течение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение n-n перемещается обратно к крану с той же скоростью c, оставляя за собой выровненное давление.

Жидкость и стенки трубы предполагаются упругими, поэтому они возвращаются к прежнему состоянию, соответствующему давлению P0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость х0, но направленную теперь в противоположную теперь сторону.

С этой скоростью весь объем жидкости стремится оторваться от крана, в результате возникает отрицательная ударная волна под давлением P0 - ДPуд, которая направляется от крана к резервуару со скоростью c, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость, что обусловлено снижением давления (рис., д). Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.

Состояние трубы в момент прихода отрицательной ударной волны к резервуару показано на рис., е. Так же как и для случая, изображенного на рис., б, оно не является равновесным. На рис., ж, показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью х0.

Очевидно, что как только отраженная от резервуара ударная волна под давлением ДP уд достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится.

Протекание гидравлического удара во времени иллюстрируется диаграммой.

Рис. Изменение давления по времени у крана

Штриховыми линиями показано теоретическое изменение давления у крана в точке А, а сплошной действительный вид картины изменения давления по времени (рис., а). При этом затухание колебаний давления происходит за счет потерь энергии жидкости на преодоление сил трения и ухода энергии в резервуар.

Если давление P0 невелико (P0 < ДP уд), то картина изменения амплитуды давления получается несколько иная.

Повышение давления при гидравлическом ударе можно определить по формуле: ДPуд = сх0c.

Данное выражение носит название формулы Жуковского. В нем скорость распространения ударной волны c определится по формуле:

где r - радиус трубопровода;

E - модуль упругости материала трубы;

д - толщина стенки трубопровода;

K - объемный модуль упругости (см. п.1.3)

Если предположить, что труба имеет абсолютно жесткие стенки, т.е. E =?, то скорость ударной волны определится из выражения:

Для воды эта скорость равна 1435 м/с, для бензина 1116 м/с, для масла 1200 - 1400 м/с.

Методы предотвращения негативных явлений гидравлического удара и его использование.

Резкое увеличение давления, сопровождающее гидравлический удар - явление крайне негативное, т.к. гидравлический удар может разрушить трубопровод или какие-либо элементы гидравлических машин, испытывающие эффекты гидравлического удара. По этой причине разрабатываются методы предотвращения гидравлических ударов или уменьшить его негативное влияние. Поскольку мощность гидравлического удара напрямую зависит от массы движущийся жидкости, то для предотвращения гидравлического удара следует максимально уменьшить массу жидкости, которая будет участвовать в гидравлическом ударе. Для этого необходимо запорную арматуру монтировать в непосредственной близости к резервуару.

В качестве меры уменьшения негативных последствий гидравлического удара используют замену прямого гидравлического удара на непрямой. Для этого достаточно запорную арматуру на напорных трубопроводах сделать медленно закрывающейся, что позволит уменьшить силу удара. Другой мерой борьбы с явлением гидравлического удара является установка на напорных линиях, работающих в условиях циклической нагрузки специальных компенсаторов с воздушной подушкой, которая принимает на себя удар.

Однако в ряде случаев явление гидравлического удара успешно используется. К таким случаям использования гидравлического удара относятся производственные процессы по разрушению материалов и др. Известна специальная конструкция водоподъёмника, базирующаяся на использовании гидравлического удара.

    

            

 

10.Список литературы

1. Рабинович Е.З. Гидравлика. 2-е изд. Исправл. - М., 1957. - 395 с.

2. Рабинович Е.З. Гидравлика. 3-е изд., исправл. и перераб. - М.: Государственное издательство физико-математической литературы, 1961. 395 с.

3.Богомолов А.И., Михайлов К.А. Гидравлика: Учебник. Изд. 2-е, перераб. и доп. - М.: Стройиздат, 1972. - 648 с.

 


 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: