Свободное электричество

Теперь поговорим о том, какую опасность несёт свободное электричество. Для начала разберёмся, что же такое вообще свободное электричество. Электричество – это совокупность явлений, связанных с движением и взаимодействием электрических зарядов. А электроэнергия, которой мы с вами пользуемся каждый день и уже не представляем свою жизнь без неё, это энергия, которая выделяется при взаимодействии электрических зарядов. Для того чтобы у нас был свет, строят различные электростанции, на которых основным способом выработки электроэнергии является преобразование механической энергии в электрическую, на этом принципе работают ГЭС, ТЭС. На этих станциях есть электрогенераторы, которые вращаются за счёт механической энергии и эти генераторы преобразуют механическую энергию в электрическую. В ГЭС используется вода, поток воды попадает на лопасти гидротурбины, которая приводит в действие генераторы. А в ТЭС же используется тепловая энергия, полученная путём сжигания топлива, которая затем преобразуется в механическую энергию для вращения вала генератора, что приводит к выработке электроэнергии. Эти рассуждения позволяют нам понять, что для получения электроэнергии требуется совершить много работы для получения механической энергии и также требуется много ресурсов, например, то же топливо. Электроэнергию нельзя назвать свободной, так как для её получения идёт множество энергетических затрат. Тогда что же является свободным электричеством? Исходя из ранних рассуждений, можно утверждать, что свободным электричеством называется электричество, для получения которого не требуются ресурсные затраты. Примером получения такого электричества могут выступать солнечные батареи. В нашей жизни основным источником энергии является солнце. Солнце излучает свет, давно доказан дуализм света, что свет это есть поток части и электромагнитная волна одновременно. Переносчиками солнечной энергии являются фотоны, которые попадают на поверхность солнечных батарей, в которых главным компонентом является фотодиод, он то и преобразует энергию фотонов в электрическую энергию. В данном случае мы берём электроэнергию из солнечного излучения, но есть и ещё примеры свободного электричества в нашей жизни. Можем далеко не ходить и брать электроэнергию прямо из атмосферы. Самым мощным источником свободного электричества является молния.

Молния

Молния – гигантский электрический искровой разряд в атмосфере, проявляющийся яркой вспышкой света и сопровождающим её громом. Обычно происходит во время грозы. Американский учёный Бенджамин Франклин доказал, что молния представляет собой электрический разряд, несущий в себе отрицательный заряд. Скоростная съёмка позволила установить, что вспышка состоит из нескольких коротких разрядов, длящихся десятые доли секунды.

Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-20 тысяч ампер, поэтому мало кому из людей удается выжить после поражения их молнией. Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — наземные молнии. В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год.

Перед тем, как говорить о способах защиты от свободного электричества, главным представителем которого является молния, нужно разобраться в причине возникновения молнии и в чём её опасность.

Молния возникает в сильно наэлектризованной дождевой туче, между облаком и землей. Причиной электризации выступает сила притяжения, которая возникает вследствие трения сконденсированных капелек или льдинок, из которых и состоит грозовая туча. Эти частички находятся в непрекращающемся движении, вызванным потоками теплого воздуха, поднимающимися вверх от нагретой поверхности земли. Льдинки и капельки воды сталкиваются друг с другом, в результате чего и происходит электризация тучи. При этом более мелкие частички, увлекаемые воздухом вверх, имеют положительный заряд, а более крупные и тяжелые, находящиеся в нижней части облака – отрицательный. Когда в облаке происходит разделение заряда, возникает электрическое поле, которое так же, как и заряды, в верхней части облака положительное, а в нижней - отрицательное. С увеличением электрического заряда, электрическое поле становится всё интенсивнее, что в итоге приводит к тому, что электроны, находящиеся на поверхности земли отталкиваются от облака и погружаются глубже в землю. В результате получается отрицательно заряженное облако и положительно заряженная поверхность Земли. Теперь для возникновения заряда требуется лишь проводник. Сильное электрическое поле создаст этот проводник самостоятельно, путём ионизации воздуха. Это означает, что когда электрическое поле достаточно сильное, происходит ионизация воздуха, то есть происходит разделение ионов и электронов. Расстояние между ними увеличивается, и это приводит к тому, что электроны могут свободно перемещаться. В результате ионизации воздуха образуется плазма, в которой и происходит распространение электрического заряда. Как только образовалась плазма, мгновенного контакта облака с Землей не происходит. Дело в том, что есть несколько путей, по которым этот контакт произойдёт. Эти пути называются лидерами. Почему несколько путей? Потому что воздух не везде ионизирован одинаково и где-то он оказывает большее сопротивление заряду, а где-то - наоборот. Ток ищет путь с наименьшим сопротивлением. Поэтому в момент образования молнии мы видим на небе несколько лидеров и не все они доходят до Земли. Лидер – это путь, по которому следует пробой, внезапный массивный поток электрического тока, движущегося от облака к Земле. Когда лидеры молнии приближаются к Земле, объекты на поверхности Земли начинают реагировать на сильное электрическое поле. От объекта к облакам растут положительные стимеры. Стримеры – это путь, по которому от поверхности Земли к облаку пройдёт ответная реакция. В точке пересечения лидера со стримером образуется проводящий путь от облака до Земли. По этому пути ток течет между Землёй и облаком. Этот разряд тока является естественным способом попытки нейтрализовать разделение заряда. Каждый раз, когда возникает электрический ток, выделяется тепло, связанное с ним. Так как в молнии содержится огромное количество тока, следовательно, в ней содержится и огромное количество теплоты. Это тепло и является причиной вспышки, которую мы видим. Также мы с вами знаем, что удар молнии сопутствуется таким явлением, как гром.

а) Гром – это ударная волна. Мы с вами разобрались, что при ударе молнии выделяется огромное количество теплоты. Воздух вокруг места удара молнии быстро нагревается. При нагревании он расширяется, и возникают механические вибрации раскалённого воздуха, их–то мы и слышим. И так как, скорость распространения света в среде больше скорости распространения звука (скорость света 3*108 м/с; скорость звука 331 м/с), вспышку мы видим быстрее, чем слышим звук.      

б) Грозовое облако — это огромное количество пара, часть которого конденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6–7 км, а низ нависать над землей на высоте 0,5–1 км. Выше 3–4 км облака состоят из льдинок разного размера, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, увлекаются восходящими потоками воздуха. Поэтому мелкие льдинки, двигаясь в верхнюю часть облака, всё время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие — положительно. Со временем положительно заряженные мелкие льдинки оказываются в верхней части облака, а отрицательно заряженные крупные — внизу. Другими словами, верхушка грозы заряжена положительно, а низ — отрицательно. Всё готово для разряда молнии, при котором происходит пробой воздуха, и отрицательный заряд с нижней части грозовой тучи перетекает на Землю. Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землей. Напряженность электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряженности больше 2500 кВ/м. Поэтому для возникновения молнии необходимо что-то еще кроме электрического поля. В 1992 году российский ученый Александр Викторович Гуревич из Физического института им. П.Н. Лебедева РАН (ФИАН) предположил, что своеобразным зажиганием для молнии могут быть космические лучи — частицы высоких энергий, обрушивающиеся на Землю из космоса с околосветовыми скоростями. Тысячи таких частиц каждую секунду бомбардируют каждый квадратный метр земной атмосферы.

Согласно теории Гуревича, частица космического излучения, сталкиваясь с молекулой воздуха, ионизирует ее, в результате чего образуется огромное число электронов, обладающих высокой энергией. Попав в электрическое поле между облаком и землей, электроны ускоряются до околосветовых скоростей, ионизируя путь своего движения и, таким образом, вызывая лавину электронов, движущихся вместе с ними к земле. Ионизированный канал, созданный этой лавиной электронов, используется молнией для разряда («Наука и жизнь» №7, 1993 г.).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: