Деление ядер урана. Цепная реакция

Возможны два принципиально различных способа освобождения ядерной энергии:

  • реакции деления тяжёлых ядер, находящихся в конце таблицы

Д.И.Менделеева и реакции синтеза лёгких ядер, находящихся в начале таблицы Д.И. Менделеева.

Деление тяжелых ядер. В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс.

В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Продолжая исследования, начатые Ферми, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др. Уран встречается в природе в виде двух изотопов: уран-238 (99,3 %) и уран-235 (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления урана-235 наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра урана-238 вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ. Основной интерес для ядерной энергетики представляет реакция деления ядра урана-235. В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид:

Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д. Кинетическая энергия, выделяющаяся при делении одного ядра урана, огромна – порядка 200 МэВ. Оценку выделяющей при делении ядра энергии можно сделать с помощью удельной энергии связи нуклонов в ядре (рис.2).

Рис.2. Зависимость удельной энергии связи от массового числа химического элемента.

Продукты деления ядра урана нестабильны, так как в них содержится значительное избыточное число нейтронов. Действительно, отношение N / Z для наиболее тяжелых ядер порядка 1,6, для ядер с массовыми числами от 90 до 145 это отношение порядка 1,3–1,4. Поэтому ядра-осколки испытывают серию последовательных β-распадов, в результате которых число протонов в ядре увеличивается, а число нейтронов уменьшается до тех пор, пока не образуется стабильное ядро.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией.

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп урана-238 также может поглощать нейтроны, но при этом не возникает цепной реакции.

Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около 50 кг. Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода D2O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду.

Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются до тепловых скоростей.

Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до 250 г.

В атомных бомбах цепная неуправляемая ядерная реакция возникает при быстром соединении двух кусков урана-235, каждый из которых имеет массу несколько ниже критической.

Термоядерные реакции

В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

Термоядерные реакции, как это следует из самого из названия (термо – температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на Солнце происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

Открытие деления тяжёлых ядер привело к возникновению и развитию ядерной (или атомной) энергетики, основанной на использовании энергии, запасённой внутри ядра атома. Установки, на которых эта энергия преобразуется в электрическую, получили название атомных электростанций (АЭС).

Интересно, что называя энергию, выделяющуюся при делении ядра, атомной, мы допускаем двойную неточность. Во-первых, делится не атом, а ядро. А во-вторых, выражение «атомная энергия» в буквальном смысле означает «энергия неделимого». Для устранения этих неточностей Фредери́к Со́дди предлагал взамен термин «томная энергия» (то есть «энергия делимого»). Однако «томная» энергия не прижилась, а так и осталась «a-томной». Правильно же её называть ядерной энергией.

Всем вам наверняка известно, что на современных АЭС для получения электроэнергии используется энергия, выделяющаяся в результате цепной реакции деления. Давайте вспомним, что цепной называется реакция, в которой частицы, вызывающие ядерную реакцию распада, образуются как продукты этой же реакции.

Как мы уже знаем, цепная реакция может быть управляемой и неуправляемой.

Для управления цепной реакцией необходимо очень точно контролировать процесс размножения нейтронов, делая его таким, чтобы число нейтронов в процессе реакции оставалось практически неизменным.

Так, например, при коэффициенте размножения нейтронов примерно равным одной целой и шести тысячным (k ≈ 1,006) цепная ядерная реакция может принять неуправляемый характер. Если же хоть чуть-чуть превысить этот предел, то мгновенно происходит ядерный взрыв.

Управляемые цепные реакции деления ядер осуществляются в ядерных реакторах.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: