Технологических схем обогащения черных, цветных, драгоценных, редкоземельных металлов и неметаллических полезных ископаемых

Сравнительная характеристика

Основой разработанных комбинированных схем переработки труднообогатимых руд металлов является получение на переделе обогащения высококачественных селективных концентратов, в которых сосредотачиваются легкообогатимые минералы, и коллективных промежуточных продуктов, которые перерабатывают по химико-металлургическим технологиям.

По существу решение сложных задач повышения эффективности переработки рудного сырья переходит в сферу более тесной интеграции процессов обогащения и металлургии, способных не только повысить комплексность использования сырья, но и решить проблемы охраны окружающей среды и сохранения природных ресурсов. Такой подход к переработке рудного сырья обеспечивает как эффективную концентрацию ценных компонентов на стадии обогащения, так и экологически безопасное производство цветных металлов.

В институте разработаны и апробированы несколько комбинированных схем для различных типов руд с использованием новых реагентных режимов флотации.

Например, молибденсодержащие руды достаточно легко и с высоким извлечением металлов обогащаются с получением коллективного концентрата. Однако селективная флотация идет неэффективно, с высокими затратами, по сложной схеме. Установлено, что молибденсодержащие промпродукты (от 5 до 20% молибдена) могут экономически выгодно перерабатываться по схеме: автоклавное окислительное выщелачивание (с дофлотацией кека) - фильтрация - очистка - селективная сорбция молибдена и рения.

Сквозное извлечение этих металлов не менее 98%, медь остается в кеках и перерабатывается как медный концентрат.

Основной проблемой обогащения медно-цинковых руд является трудность отделения медных минералов от остальных сульфидов в силу их тонкого прорастания. Разработанная схема включает получение на этапе обогащения высококачественных медных концентратов и промпродуктов, подвергаемых окислительному автоклавному выщелачиванию отработанным цинковым электролитом. Извлечение цинка в раствор составляет 93-96%. Разработано несколько способов выделения меди из раствора применительно к различному соотношению металлов в нем.

При обогащении медно-никелевых руд получают медный и никелевый концентраты и пирротиновый продукт, содержащий железо, никель, медь и благородные металлы. Для переработки этого продукта используют химическое обогащение, в основу которого положено окисление пирротина в водной пульпе в автоклавах, осаждение перешедших в раствор цветных металлов, флотационное отделение сульфидов и элементной серы от оксидов железа с последующей селекцией пенного продукта с получением богатого сульфидного концентрата и товарной серы.

Технология позволяет извлечь из бедного продукта 85-92% никеля, меди и благородных металлов и утилизировать серу. За счет перевода в промпродукт трудноразделяемых минералов удалось существенно повысить качество медного и никелевого концентратов на стадии первичного обогащения.

Полиметаллические руды представляют собой наиболее сложное сырье для обогащения, так как необходимо получить не менее трех товарных концентратов. Разработанная для этих руд комбинированная схема включает коллективную флотацию сульфидов (при отсутствии цикла селекции суммарное извлечение трех металлов составило 270%), автоклавное окислительное выщелачивание (до сульфатов), фильтрация, флотация из кеков благородных металлов и свинца. Извлечение из концентрата меди и цинка в раствор составило 98%, свинца в ценный продукт флотации 85%. Медно-цинковый раствор может быть переработан известными способами. Аналогичные результаты получены и на свинцово-цинковых труднообогатимых рудах.

Наиболее перспективным и приоритетным направлением в развитии автогенных процессов в первую очередь в металлургии меди является плавка с получением в одну стадию “белого матта” (черновой меди).

Новым высокоэффективным процессом является усовершенствованная кислородно-факельная плавка:

· кислородно-факельная плавка (КФП) в агрегатах с вертикальными шихтово-кислородными горелками с наведением высокоосновных саморассыпающихся ферритно-кальциевых шлаков, которые затем подвергаются глубокому флотационному обезмеживанию. Для данного варианта технологии на основе специальных исследований тщательно подобран новый состав шихты для КФП при определенном соотношении Fe: SiO2: CaO. Шлак успешно флотируется с извлечением более 87% меди в концентрат и получением отвальных хвостов с содержанием менее 0, 29% Сu.

· факельно-барботажная плавка (ФБП). Это принципиально новый способ плавки и агрегат для его реализации, сочетающий в полной мере все достоинства как факельных, так и барботажных процессов.

Технология базируется на следующих вновь предложенных и исследованных приемах: разделение реакционного объема на последовательные зоны с индивидуальным подводом газообразного окислителя, бесфлюсовое окисление сульфидов до штейна в головной факельной зоне, доокисление расплава до “белого матта” (черновой меди) в следующей барботажной зоне с подачей в нее флюсов и формированием комбинированного силикатно-кальциевого шлака, который подвергается внутрипечному барботажному обеднению в специальной зоне. Технология внедряется на Алмалыкском комбинате (Узбекистан), где сооружается печь ФБП мощностью до 120 тыс. т меди в год.

На комбинате “Североникель” сульфидные концентраты, полученные при разделении файнштейна, обжигают в печах кипящего слоя (КС). На трубчатой печи для восстановления огарка в интервале температур 850ч1100°С используется разработанная технология получения высокоактивного никеля с суммарной степенью металлизации по Ni и Со 90 %. В производстве анодов получаемого чернового никелевого порошка методом дуговой электроплавки за счет увеличения степени металлизации и активности порошка удалось снизить на 7 % удельный расход электроэнергии и на 9,3 % расход электродов.

Впервые на Рязцветмете внедрена технология переработки сурьмянистых концентратов. Извлечение золота из сырья в сплав составило 95,7 %. Получаемая на производстве металлическая сурьма соответствует марке Су-О.

В производстве свинца разработана и используется на упомянутом заводе технология переработки аккумуляторного лома в электропечах мощностью 1,8 МВА и с площадью пода 13 и 15 м2. Схема безотходной электротермической технологии переработки отработавших аккумуляторов включает: механизированную разделку аккумуляторного лома, плавку, рафинирование чернового свинца и переработку оборотов с получением товарных продуктов. На сепарационной установке дробленный аккумуляторный лом подвергается разделению на пять фракций (металлическую, оксисульфатную, полипропилен, поливинилхлорид и эбонит). Плавка ведется без образования штейна, количество шлака сокращено до минимума.

В полупромышленном масштабе отработана принципиально новая, экологичная, малоотходная технология переработки некондиционных полиметаллических концентратов, содержащих свинец, медь и цинк, и промежуточных продуктов с получением товарных продуктов: чернового свинца, содержащего благородные металлы, штейна; шлака, с содержанием более 15 % оксида цинка, его перерабатывают вельцеванием или шлаковозгонкой. Технологическая схема включает окислительный обжиг в прокалочной печи и плавку в электротермической печи с небольшим объемом отходящих газов.

Для переработки различного металлургического техногенного сырья разработана печь постоянного тока с поляризацией жидкометалльной донной фазы (штейна, металла) ПДФ.

Печь ПДФ позволяет перерабатывать экологически безопасным способом металлургическое техногенное сырье - забалансовые и труднообогатимые полиметаллические руды, текущие и накопленные нецелевые промпродукты с достаточно высоким содержанием ценных металлов (шлаки, шламы, кеки, клинкеры и др.), а также вторичное сырье и практически любые отходы при температуре до 1800°С с отгонкой летучих и переводом нелетучих ценных металлов и серы в донную фазу.

Технология впервые в указанной области позволяет реализовать в промышленном масштабе преимущества электролиза расплавленных сред, включая электрохимическое восстановление металлов, интенсификацию их осаждения в донную фазу и отгонки летучих компонентов, резко повысить извлечение ценных металлов, решить проблему избыточного настылеобразования в шлаковых электропечах.

Для переработки бедных окисленных никелевых руд Урала разработана хлоридовозгоночная технология. Она осуществляется во вращающейся печи, отапливаемой пылеуглем, при температуре 1050-1100 °С, уголь сгорает в нагретом до 300-400°С воздушном дутье, при этом в факел вдувается хлористый водород и водяной пар. Получаемые оксиды железа, никеля и кобальта могут быть переработаны в различные виды товарной продукции.

Переработка потерявших активность катализаторов

Катализаторы, используемые в нефтеперерабатывающей промышленности, содержат такие ценные компоненты как рений, платина, палладий, молибден, кобальт, никель.

Технологическая схема переработки катализаторов, содержащих молибден, никель, кобальт включает удаление органических веществ из сырья, селективный перевод молибдена в раствор на первичной операции с последующим сорбционным извлечением, концентрированием и очисткой от примесей, получением товарной молибденовой продукции.

На комбинате “Североникель” освоена технология переработки платинорениевых катализаторов, по которой получают платиновый концентрат и перренат аммония. Извлечение рения в перренат аммония составляет 93-94 %. Технология включает перевод рения в жидкую фазу пульпы и сорбционную переработку растворов с использованием ионитов высокой сорбционной емкости.

Разработаны новые технологии извлечения платины, палладия, родия из дезактивированных катализаторов. Эти технологии позволяют извлекать платиновые металлы совместно и раздельно в виде металлических порошков. Получение порошков платины и палладия основано на процессах реагентного восстановления солей этих металлов в условиях гетерогенной реакции. Содержание основных компонентов в порошке составляет 99,80-99,99 %. Извлечение платины - 96-99,2 %.

Новым направлением в гидрометаллургии является использование экстракции и сорбции для извлечения и разделения редких и рассеянных элементов, а также тугоплавких металлов.

Экстракция индия из цинковых растворов внедрена на всех цинковых заводах, а также на Чимкентском свинцовом заводе. Аналогов такой технологии в мировой практике не имеется. Внедрение экстракции позволило повысить его извлечение в товарную продукцию на 10-30 %.

На Джезказганском горно-металлургическом комбинате экстракция рения используется для его извлечения из промывной серной кислоты. На Чимкентском свинцовом заводе сорбция рения применяется при переработке свинцовых пылей. Экстракционный способ извлечения рения использовался на Скопинском гидрометаллургическом заводе при переработке молибденовых ренийсодержащих концентратов. На Усть-Каменогорском свинцово-цинковом комбинате теллур полупроводниковой чистоты получают с применением жидкостной экстракции.

В более крупных масштабах экстракция используется при получении вольфрамового ангидрида. На Нальчикском гидрометаллургическом заводе объем переработки вольфрамовых растворов экстракцией составлял 165000 м3 в год; в настоящее время объем переработки снизился до 45000 тыс. м3.

На Норильском горно-металлургическом комбинате и комбинате “Североникель” действуют экстракционные установки по получению кобальта повышенной чистоты. Ведутся проектные работы по переходу на этих комбинатах к гидрометаллургии никеля с использованием экстракции для разделения металлов.

На Челябинском цинковом заводе нашли применение новые флокулянты для повышения степени очистки сточных вод до требований санитарно-бытового и рыбохозяйственного водопользования.

 

Вопросы для самоконтроля:

1. Какие комбинированные схемы переработки применяются для обогащения труднообогатимых руд металлов?

2. Какой подход способствует повышению эффективности переработки рудного сырья?

3. С какими проблемами сталкиваются производственники при обогащении медно-цинковых руд?

4. Какие инновационные процессы входят в схемы обогащения полиметаллических руд?

5. Кратко охарактеризуйте технологии получения на этапе обогащения высококачественных медных концентратов и промпродуктов

6. Приведите схему обогащения полиметаллических руд с получением коллективных концентратов

7. Кратко охарактеризуйте технологию переработки некондиционных полиметаллических концентратов, содержащих свинец, медь и цинк

8. Что такое экстракция? В каких переделах она используется, для получения каких концентратов?

9. На чем основано получение порошков платины и палладия?

10.  Какие процессы применяются для переработки бедных окисленных никелевых руд?


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: