Часть IV. Усилители мощности

Усилители мощности - это выходные усилительные каскады многокаскадного усилителя в электронных устройствах. При проектировании усилителя мощности на первый план выдвигаются два параметра - КПД (коэффициент полезного действия) и уровень нелинейных искажений, который оценивается коэффициентом нелинейных искажений.

КПД оценивается отношением полезной мощности (выделенной в нагрузке) к затраченной (потребляемой от источника).

Основная задача, которую ставит перед собой разработчик усилителей мощности: обеспечить необходимую мощность и передать её в нагрузку с минимальными искаженями. Поэтому, в какой-то степени, усилитель мощности - это пример силовой электроники.

Но реальный усилитель мощности, в первую очередь, это устройство информативной электроники. В таких устройствах основная задача - снизить мощность обрабатываемых сигналов до такого уровня, при котором помехоустойчивость устройства ещё приемлема. И лишь во вторую очередь - устройство, которое содержит элементы и силовой электроники (в этих устройствах такую первоочередную задачу ставить нельзя). При проектировании схем усилителей мощности следует помнить об этом различии.

К величине коэффициента усиления по напряжению особых требований нет: как правило, он чуть больше единицы. Усиление мощности происходит за счёт усиления по току.

В выходных усилителях мощности должны использоваться каскады с малым выходным сопротивлением, а вводимые в схему цепи ООС должны быть только по напряжению. По этой причине схемы усилителей мощности строятся по двухтактным схемам. Такие схемы дают хороший выигрыш и по мощности.

Такие усилители находят большее применение, чем с трансформаторным выходом: там, где трансформатор на первое место выходит проблема габаритов и веса устройства в целом.

Что же представляет из себя усилитель мощности (далее, для краткости будем называть его УМ)? Исходя из вышеизложенного, структурную схему усилителя можно условно разделить на три части:

· Входной каскад

· Промежуточный каскад

· Выходной каскад (усилитель мощности)

 

Все эти три части выполняют одну задачу – увеличить мощность выходного сигнала без изменения его формы до такого уровня, чтобы можно было раскачать нагрузку с низким сопротивлением. Например: динамическую головку или наушники.

 

Бывают трансформаторные и бестрансформаторные схемы УМ.

 

1. Трансформаторные усилители мощности.

Рассмотрим однотактный трансформаторный УМ, в кото­ром транзистор включен по схеме с ОЭ (рис. слева).

Трансформаторы ТР1, и ТР2 предназначены для согласования нагрузки и выходного сопротивления усилителя и входного сопротивления усилителя с сопротивлением ис­точника входного сигнала соответственно. Элементы R и D обеспечивают начальный режим работы транзистора, а С увеличивает переменную составляющую, поступающую на транзистор Т.

Поскольку трансформатор является нежелательным элементом усилителей мощности, т.к. имеет большие габариты и вес, относительно сложен в изготовлении, то в настоящее время наибольшее распространение получили бестрансформаторные усилители мощности.

2. Бестрансформаторные усилители мощности.

Рассмотрим двухтактный УМ на биполярных транзисторах с различным типом проводимости. Как уже отмечалось выше, необходимо увеличить мощность выходного сигнала без изменения его формы. Для этого берется постоянный ток питания УМ и преобразуется в переменный, но так, что форма сигнала на выходе повторяет форму входного сигнала, как показано на рисунке ниже:

Если транзисторы обладают достаточно высоким значением крутизны, то возможно построение схем, работающих на нагрузку величиной единицы Ом без использования трансформаторов. Питается такой усилитель от двухполярного источника питания с заземленной средней точкой, хотя возможно построение схем и для однополярного питания.

Принципиальная схема комплементарного эмиттерного повторителя - усилителя с дополнительной симметрией - приведена на рисунке слева. При одинаковом входном сигнале через транзистор n-p-n-типа протекает ток во время положительных полупериодов. Когда же входное напряжение отрицательно, ток будет течь через транзистор p-n-p-типа. Объединяя эмиттеры обоих транзисторов, нагружая их общей нагрузкой и подавая один и тот же сигнал на объединенные базы, получаем двухтактный каскад усиления мощности.

Рассмотрим более подробно включение и работу транзисторов. Транзисторы усилителя работают в режиме класса В. В данной схеме транзисторы должны быть абсолютно одинаковы по своим параметрам, но противоположны по планарной структуре. При поступлении на вход усилителя положительной полуволны напряжения Uвх транзистор Т1, работает в режиме усиления, а транзис­тор Т2 — в режиме отсечки. При поступлении отрицатель­ной полуволны транзисторы меняются ролями. Так как напряжение между базой и эмиттером открытого транзи­стора мало (около 0,7 В), напряжение Uвых близко к напря­жению Uвх. Однако выходное напряжение оказывается искаженным из-за влияния нелинейностей входных ха­рактеристик транзисторов. Проблема нелинейных искажений решается подачей начального смещения на базовые цепи, переводящей каскад в режим АВ.

Для рассматриваемого усили­теля максимально возможная амплитуда напряжения на нагрузке Um равна E. Поэтому максимально возможная мощность нагрузки определяется выражением

Можно показать, что при максимальной мощности нагрузки усилитель потребляет от источников питания мощность, определяемую выражением

Исходя из вышесказанного, получаем максимально возможный коэффици­ент полезного действия УМ: nmax = P н.max / P потр.max = 0,78.

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow