Определение деформаций зданий

Обследование зданий

 Методы обследования состояния зданий и конструкций

Обследование зданий является важнейшей частью комплекса работ по оценке их технического состояния с целью принятия решений по их реконструкции, модернизации или ремонту. Основная цель диагностики технического состояния зданий заключается в установлении фактической несущей способности и эксплуатационной надежности строительных конструкций. Полученные данные используются при разработке проектов реконструкции.

Оценка физико-механических и технических характеристик конструктивных элементов и здания в целом как сложной строительной системы включает: оценку общих и местных деформаций, состояние основания, фундаментов, несущих и ограждающих конструкций, кровли и т.д.

Конечным результатом обследования является оценка физического состояния конструкций и здания в целом. Немаловажная роль при этом отводится ликвидации причинных факторов износа конструкций.

Работа по обследованию выполняется в два этапа.

I - предварительное, или общее обследование. Осуществляется путем визуального осмотра здания и его конструкций, ознакомления с технической документацией и другими материалами, помогающими составить более полное представление об объекте. Осмотром должны быть выявлены участки и отдельные конструкции, имеющие максимальные повреждения. На этом этапе должны быть приняты меры по временному усилению конструкций.

В результате изучения проектной документации должны быть установлены: период строительства, время проведения капитальных ремонтов, изменения режимов эксплуатации, даты возможных аварий, связанных с затоплением фундаментов или подвальной части, подъемом уровня грунтовых вод и т.п. Изучение архитектурно-строительных, конструкторских, инженерных сетей и коммуникаций и других рабочих чертежей позволит сделать предварительный вывод о расчетных и фактических нагрузках и воздействиях, инженерно-геологических условиях строительства и особенностях эксплуатации зданий.

Для более полного представления о состоянии объекта должны быть использованы дополнительные материалы: акты сдачи объекта в эксплуатацию, акты на скрытые работы, журналы производства работ, документация о проведенных ремонтно-восстановительных работах и т.п.

В случае частичного или полного отсутствия проектной документации необходимо выполнить натурные обмеры конструкций и восстановить чертежи здания. При этом в процессе обмерочных работ устанавливаются конструктивная схема, размеры сечений несущих и ограждающих конструкций, положение конструкций в пространстве с привязкой к координатным осям и отметкам. При этом необходимо определить деформации конструкций, условия опирания, конструкции узлов и их состояние, имеющиеся дефекты несущих и ограждающих конструкций.

По результатам предварительного обследования проводится ориентировочная оценка технического состояния здания и намечается программа детального обследования.

II - детальное обследование. Проводится с целью сбора достоверных сведений для оценки технического состояния конструкций. В результате обследования устанавливают их положение в плане и по высоте, определяют сечение несущих элементов, осадок, смещений и других отклонений от проекта. Систематизируются дефекты и повреждения конструкций, узлов и сопряжений. Уточняются сведения об эксплуатационной среде, устанавливается величина статических и динамических нагрузок, действующих на основание фундамента, основные несущие конструкции. Уточняются расчетные схемы несущих конструкций для выполнения поверочностных расчетов.

Детальное обследование конструкций следует выполнять выборочно или сплошным. Сплошное обследование предполагает проверку всех конструкций, а выборочное - отдельных элементов.

Сплошное обследование осуществляется во всех случаях, когда: отсутствует техническая документация, обнаружены дефекты конструкций, снижающие их несущую способность, неоднородные свойства материалов конструкций, различные условия нагружения при воздействии неблагоприятных условий эксплуатации.

Если в процессе сплошного обследования обнаружится, что не менее 20 % однотипных конструкций находится в удовлетворительном техническом состоянии, то допускается оставшиеся конструкции обследовать выборочно. Объем выборочно обследуемых элементов должен составлять не менее 10 % однотипных конструкций, но не менее трех.

Особое внимание при детальном обследовании уделяется оценке значений физико-механических характеристик материала ограждающих и несущих конструкций. Она производится методом отбора проб с последующими испытаниями, а также неразрушающими методами.

При проведении детальных обследований должны быть установлены вид и степень агрессивности окружающей среды, колебания уровня грунтовых вод, характер динамических воздействий и природа их возникновения.

На этапе детальных обследований проводятся инженерно-геологические изыскания с целью получения более достоверных сведений о состоянии и характере залегающих грунтов, в том числе под подошвой фундаментов, о размерах фундаментов, способах и схемах передачи нагрузок на основание, точности геометрических осей несущих конструкций. Особое внимание уделяется характеру изменения свойств грунтов за период эксплуатации.

Результатом обследования являются: тип фундамента, его форма в плане, размеры и глубина заложения, материал фундамента и его физико-механические характеристики, наличие и состояние гидроизоляции.

Инженерно-геологические изыскания проводят при отсутствии рабочих чертежей фундаментов зданий, исполнительных документов по их возведению, при размещении объектов в сложных инженерно-геологических условиях (на подрабатываемых и подтопляемых территориях, на площадках с большим перепадом высот, при длительной эксплуатации зданий).

Детальное обследование - весьма продолжительный и трудоемкий процесс, поэтому необходимость его проведения должна быть доказана на этапе предварительного обследования.

При выполнении всех видов работ по обследованию конструкций необходима четкая регистрация полученных данных с оформлением актов технического состояния конструкций, материалов, инженерного оборудования.

 Инструментальные средства контроля технического состояния зданий

Техническое обследование зданий имеет целью определить физическое состояние конструкций, степень изменения свойств материалов, дефекты конструкций. Оно производится перед реконструкцией, учитывает будущую перепланировку помещений, возможную замену перекрытий, надстройку и другие решения. Это приводит к увеличению постоянных и временных нагрузок. Поэтому получение наиболее полных данных о фактическом состоянии несущих и ограждающих конструкций с учетом изменения их во времени служит исходным материалом для проектирования реконструктивных работ.

В процессе диагностики и освидетельствования строительных конструкций зданий, для определения физико-механических свойств материалов, геометрических характеристик, прогибов и перемещений, дефектоскопии и т.п. применяют самые разнообразные приборы и оборудование.

Для определения соответствия проектному положению строительных конструкций, включая деформации всех видов, применяются геодезические приборы и приспособления (теодолиты, нивелиры). Для измерения кренов и колебаний зданий применяют оптические лазерные приборы вертикального проецирования.

При обследовании конструкций применяют теодолиты Т2, 2Т5К, нивелиры H1, H05, КОН-007, оптические центровочные приборы ОЦП-2, «Зенит-ОЦГТ», «Зенит-ЛОТ» и др.

Широко используются фототеодолиты различных марок с приспособлениями для обработки данных измерений в виде стереофотограмметрических камер, инженерных фотограмметров, стереокомпараторов и др. Для повышения точности геодезических измерений используются лазерные приборы.

Определение прочностных и деформативных свойств материалов, из которых изготовлены и возведены конструкции зданий, осуществляется методами прямых испытаний образцов. Несмотря на достаточно высокую трудоемкость этих работ, данный метод позволяет получить более достоверные результаты.

Для извлечения образцов широко используются универсальные кернообразователи с алмазными коронками. Они позволяют получать образцы материала в виде цилиндров при различном расположении конструкций. В результате механических испытаний определяются: прочность, плотность, водонепроницаемость и другие физико-механические характеристики.

Для получения требуемой достоверности испытаний используются вероятностно-статистические методы, учитывающие случайный характер распределения свойств материала.

Извлечение опытных образцов из конструкции часто затруднительно. Поэтому при обследовании зданий широко используются неразрушающие методы испытаний.

Приборы для определения прочностных и деформативных свойств материалов конструкций базируются на применении:

I. механических методов - методы пластических деформаций, основанные на вдавливании штампа в поверхность материала (молоток Кашкарова, склерометр Шмидта, прибор КМ, молоток Физделя и др.); методы испытаний на отрыв и скалывание, основанные на отделении бетона путем отрыва со скалыванием (гидравлические пресс-насосы); метод упругого отскока - прибор КМ и др.;

II. физических методов - ультразвуковые методы, основанные на измерении скорости распространения упругих волн. Ультразвуковые дефектоскопы Пульсар, Tico, Бетон 12М, УК-12М (рис. 2.4), измерители прочности бетона, кирпича и других материалов конструкций ОНИКС-2.3, Digi Schmidt (рис. 2.5); ПИК-1 и т.п.; радиоизотопные, основанные на определении плотности по изменению интенсивности гамма-излучения; магнитный для определения толщины защитного слоя арматуры ИЗC-10Н и др.

Рис. 2.4. Ультразвуковые дефектоскопы отечественного (Пульсар) (а) и зарубежного производства (Tico) (б)

Рис. 2.5. Измерители прочности бетона
а - Оникс-2.3 производства фирмы «Карат» (РФ); б - молоток Шмидта (Германия)

Для определения динамических характеристик используются виброметры ВИСТ-2, измеритель механических напряжений и колебаний ИНК-2, амплитудомеры, вибромарки, электронная виброизмерительная и записывающая аппаратура в составе: пьезодатчиков ускорения или перемещений, усилителя и записывающего прибора. При этом запись динамических параметров производится как на ленте с помощью механических или световых систем, так и на компьютере с программным обеспечением расшифровки динамических параметров - амплитуды, частоты колебаний, ускорения, а также амплитудно-частотных спектров. По данным тарировочных испытаний определяются динамические параметры строительных систем.

Современные приборы диагностики обеспечивают не только достаточно высокую точность измерений с пределом погрешностей 3-5 %, но и имеют малые габариты, графический дисплей с подсветкой, оптоинтерфейс - канал информационной связи с компьютером и программы компьютерного анализа.

Для измерения усилий, передаваемых на конструкции лебедками, домкратами и др., применяют гидравлические и пружинные динамометры, прогибомеры типа ПМ-3, ПАО-5, электронные измерители деформации ЭИД, ТЦМ с использованием тензорезисторов различного типа. Для определения углов поворота конструкций используют клинометры.

Широкое распространение для оценки состояния конструкций получили неразрушающие методы натурных испытаний. Их применяют для установления прочности на сжатие R, которая определяется как функция R = f(х1) механической или физической характеристики материала, полученной опытным путем.

Особое место в определении дефектов бетонных, железобетонных и каменных конструкций отводится ультразвуковому методу испытаний. С его помощью определяются дефекты конструкций (полости и пустоты, глубина трещин, толщина поврежденного слоя и т.п.).

Определение прочности бетона по скорости прохождения ультразвука осуществляется при сквозном, диагональном и поверхностном прозвучивании (рис. 2.6).

Рис. 2.6. Принципиальная схема дефектоскопа (а), схемы определения прочности бетона сквозным (б), диагональным (в) и поверхностным (г) прозвучиванием, (д) - градуированная кривая «прочность - скорость ультразвука»
1,2 - точки установки преобразователей; 3 - испытываемая конструкция; 4 - кабели; 5 - источник ультразвука; 6 - цифровой индикатор

Используя градуировочную зависимость «прочность бетона - скорость ультразвука», производится оценка прочностных характеристик конструкций.

На рис. 2.7 приведены некоторые примеры определения дефектов железобетонных конструкций. Для обнаружения пустот и каверн в теле бетонных и железобетонных конструкций используется сквозное ультразвуковое прозвучивание. Зона дефекта оценивается как область с резким снижением скорости ультразвука (рис. 2.7,а).

Для обнаружения и оценки глубины трещин в бетонных и железобетонных конструкциях используются известные в строительстве импульсные ультразвуковые приборы. Применяют поверхностное прозвучивание. Расстояние между ультразвуковыми датчиками составляет 120-400 мм. О наличии трещины свидетельствует изменение времени распространения ультразвуковых колебаний на базе измерения. Для обнаружения трещин удобнее использовать приборы с датчиками на фиксированной базе и сухим контактом (рис. 2.7,б).

При заметном увеличении времени распространения ультразвукового сигнала, свидетельствующего о трещине, может быть установлена ее глубина. Для этого трещина должна располагаться под центром базы установки датчиков.

Рис. 2.7. Определение дефектов железобетонной конструкции ультразвуком
а - определение пустот; б - определение трещин; в - ультразвуковой прибор; г - определение зон отслоившегося и разрушенного бетона; д - график распространения скорости ультразвука; 1,2 - преобразователи ультразвука; 3 - испытываемая конструкция; 4 - зона дефектов; 5 - график изменения скорости ультразвука

Сопоставительный анализ неразрушающих методов испытания бетона конструкций показал правомочность и достаточно высокую однородность результатов, полученных прибором упругого отскока КМ, эталонным молотком Кашкарова, ультразвуковым способом и методом непосредственных испытаний образцов, выбуренных из тела конструкций. Коэффициенты вариации по прочности соответственно составили при испытании колонн - 10,3; 10,4; 10,0 и 12,6 %; при испытании плит перекрытий - 12,6; 11,8; 12,9 и 13,8 %; при испытании блоков фундаментов - 16,8; 20,4; 19,6 и 20,8 %.

Для полной оценки железобетонных конструкций необходимо знать состояние арматуры и величины защитного слоя бетона. Наиболее эффективным и достаточно универсальным является магнитный способ, а также вскрытие арматуры на наименее напряженных участках конструкций с последующим восстановлением.

Магнитный способ определения защитного слоя арматуры достаточно прост в обращении, имеет высокую степень точности измерения. Переносной прибор ИЗС-10Н позволяет проводить измерения в стесненных условиях и не требует высококвалифицированного персонала. Он обеспечивает обнаружение арматуры с определением ее диаметра от 4 до 32 мм. Диапазон измерения толщины защитного слоя - от 5 до 50 мм. Допустимая погрешность измерения составляет 5 %. Прибор удобен в эксплуатации, имеет малые габаритные размеры и массу в пределах 4,5 кг.

Новое поколение электронных приборов-измерителей защитного слоя типа ПОИСК-2.2, Profometr и др. (рис. 2.8) имеет автоматизированную систему оценки диаметра арматуры. Поиск арматуры и определение проекций стержней осуществляются по цифровой, тонально-звуковой и мнемонической информации. Прибор имеет габариты 145´40´25 мм, потребляет мощность 0,02 Вт, обеспечивает диапазон толщин защитного слоя до 120 мм при диаметре арматуры 3-50 мм.

Рис. 2.8. Прибор для измерения и регистрации защитного слоя бетона

Вскрытие арматуры для оценки ее состояния является приемом, когда отсутствуют инструментальные средства контроля требуемых параметров, и широко используется в практике диагностирования железобетонных конструкций.

Для оценки и наблюдения за раскрытием трещин в бетонных, железобетонных и каменных конструкциях используются различные системы маяков, микроскопов и индикаторов часового типа.

Помимо физико-механических характеристик и дефектов несущих конструкций весьма важно произвести оценку следующих параметров, существенно влияющих на комфортность проживания, санитарно-гигиенические условия и эксплуатационные качества жилища, таких, как: воздухопроницаемость стыков панелей; влажность утеплителя стен; состояние герметика стыков; теплозащитные свойства ограждений; звукоизоляция ограждений; газовый состав воздуха в помещениях; воздухообмен, влажность воздуха, температура, освещенность помещений; скорость движения воздуха в помещениях и другие параметры.

Следует отметить, что в последнее время разработан ряд приборов, обеспечивающих контактное и бесконтактное измерение параметров с цифровой или магнитной записью процессов. Наиболее эффективными следует считать тепловизоры, с помощью которых производится инструментальная съемка динамики теплопередачи ограждающих конструкций, лазерные системы термощупов, электронные газоанализаторы и др.

Для количественной оценки теплопотерь и тепловых полей при неоднородности стенового ограждения и примыкания светопрозрачных конструкций (окна, балконные двери и т.п.) очень важен выбор приборов, оптимально решающих задачу бесконтактной регистрации тепловых полей, с учетом разрешающей способности и с учетом критерия «цена - качество».

Известно, что одними из основных факторов, определяемых при регистрации тепловых сетей и влияющих на погрешность оценки термического сопротивления и обнаружения дефектов строительных конструкций, являются пространственная разрешающая способность и температурная погрешность регистрации, а также и временной интервал процесса проведения контроля.

С точки зрения получения реальной картины тепловых полей и источников теплопотерь целесообразно использовать приборы с более высокой разрешающей способностью.

Применение тепловизоров при заводском изготовлении наружных стеновых панелей является эффективным средством выбраковки, определения мостиков холода, зон более высокой плотности бетона и др. технологических нарушений.

Отклонение указанных параметров от нормативных значений приводит к разной потере эксплуатационных качеств, повышению расхода тепла на обогрев помещений, изменению микроклимата квартир и другим негативным моментам.

Так, постоянное увлажнение помещений и высокие теплопотери в результате продуваемости стыков приводят к частому заболеванию жильцов. Эти же параметры существенно влияют и на долговечность конструкций.

Слабая звукоизоляция внутренних стен, перекрытий, лестничных площадок и лифтовых шахт, характерная для крупнопанельных жилых зданий, приводит к дискомфорту проживания, а повышенные вибрационные нагрузки - к нарушению герметичности стыков и их преждевременному разрушению.

Существенное влияние на условия проживания оказывают химический состав воздуха и наличие агрессивных компонентов, что может являться результатом внешнего воздействия, а также реакцией материала конструкций и отделочных покрытий при взаимодействии с атмосферой.

Наличие блуждающих токов и других электромагнитных явлений в конструкциях жилых зданий также приводит к нарушению комфортности проживания.

Использование строительных материалов, не проверенных на радиоактивность, приводит в некоторых случаях к повышенному радиационному фону помещений. Это относится прежде всего к стеновым материалам из шлака и золы гидроудаления. Поэтому постоянный контроль за присутствием радиоактивности в щебне и других материалах обязателен при выполнении реконструктивных работ.

Одним из критериев, существенно влияющих на комфортность проживания, является воздухообмен помещений. Требования СНиП нормируют расход воздуха для различных помещений, что достигается методами принудительной и естественной вентиляции. Особое место при этом отводится оценке воздухопроницаемости ограждающих конструкций и их влиянию на микроклимат помещений.

Этими требованиями обеспечивается поддержка чистоты воздуха в помещениях, которая достигается не только кратностью воздухообмена, но и требованиями к элементам зданий и отделочным материалам по их способности выделять вредные вещества.

Экологическая чистота жилых помещений и зданий в целом формирует условия безопасного проживания граждан, обеспечивающие минимально необходимые санитарно-гигиенические условия, образующие внутренний микроклимат: температурный режим; влажностный и подвижный режимы воздуха; приемлемые уровни шума и вибраций; концентрации вредных химических веществ в воздухе; освещенность и инсоляция; уровни электромагнитного и ионообразующего излучения; уровень статического электричества.

Комплекс минимально допустимых параметров дает представление о критериях экологически чистого жилья и экологической безопасности. Каждая квартира или жилой дом должны иметь санитарно-гигиенический паспорт, составленный на основе инструментальной проверки физического состояния. Особое значение данный документ приобретает при выполнении реконструктивных работ, объемы которых ежегодно возрастают.




Определение деформаций зданий

Под воздействием постоянных и переменных нагрузок в зданиях могут возникать деформации. Они подразделяются на местные, когда перемещения, прогибы или повороты происходят в узлах и конструкциях, и общие, когда перемещается и деформируется здание в целом. В свою очередь, деформации могут быть остаточными и упругими, исчезающими при снятии нагрузки.

Для измерения местных деформаций используются различные системы прогибомеров и индикаторы часового типа.

Общие деформации здания являются следствием просчетов в подборе фундаментов, что приводит к неравномерной осадке различных частей здания, а также к нарушениям эксплуатационного режима - замачиванию грунтов вследствие аварии сетей водо- и теплоснабжения, изменению гидрогеологических условий.

Для измерения осадок, кренов, смещений зданий используют методы инженерной геодезии. Смысл диагностики заключается в сопоставлении отметок реперов и осадочных марок. Реперы закладываются на такую глубину, чтобы их основанием служили практически несжимаемые грунты. Их располагают вокруг здания на расстоянии 30-100 м.

Осадочные марки устанавливают в фундаменты по периметру здания. Положение их осей выносят на стены и фиксируют несмываемой краской. С помощью нивелирования определяют характер общих осадок для различных участков здания (рис. 2.11).

Рис. 2.11. Схемы определения осадки зданий и кренов
а - схема регистрации осадки здания: Роп - опорные репера; ОМ - осадочные марки; б, в - определение крена здания методом измерения горизонтальных углов: А, А1 - центры знаков на расстоянии 30-50 м от здания; С, С1 - удаленные знаки; В - марка на верхней части здания; g, g1 - измеряемые углы

Крены зданий фиксируют боковым нивелированием или измерением горизонтальных углов. Использование клинометров и кренометров позволяет получить более точные характеристики деформаций. Для измерения наклонов используют точные уровни с измерительным винтом.

Линейная величина частных кренов, мм, определяется по зависимостям (рис. 2.8,б)

где g, g1 - приращение угла в одну сторону; L, L1 - расстояние от сооружения до знака; r - коэффициент перевода углов в линейное значение.

Измерение сдвигов зданий осуществляется с помощью теодолита. При этом боковое смещение измеряют от прямых линий, фиксируемых вдоль периметра здания. В качестве линии отсчета используют струну или лазерный луч.

Более точным средством регистрации деформаций является метод фотограмметрии, который позволяет получать графическое изображение объекта с параметрами отклонений различных его точек.

Особое внимание при диагностике технического состояния зданий отводится оценке геометрического положения несущих и ограждающих конструкций, узлов и сопряжений, деформаций в виде прогибов, угловых смещений и т.п. Эти параметры измеряются традиционными методами и сравниваются с допустимыми значениями.

В местах, неудобных для геометрического нивелирования из-за стесненности условий работ, используется гидростатическое нивелирование. Гидростатический прибор подвешивается к высотным маркам и по разности отсчетов по соседним трубкам определяется величина превышений. Точность измерений составляет 0,1 мм.

После регистрации деформаций отдельных конструкций производят сравнение с допустимыми значениями (табл. 2.4).

Таблица 2.4

Значение предельно допустимых прогибов

№ п.п. Элементы конструкций Предельно допустимые прогибы
1 Железобетонные перекрытия с плоским потолком при пролете, м:  
  l < 6 1/200
  6 < l < 7,5 3 см
  l > 7,5 1/250
2 Перекрытия с ребристым потолком, м:  
  l < 5 1/200
  5 < l < 10 2,5 см
  l > 10 1/400
3 Металлические балки перекрытий при пролете, м:  
  l < 6 1/250
  6 < l < 7,5 2 см
  7,5 < l < 10 1/400
4 Стеновые панели самонесущие при пролете, м:  
  l < 6 1/200
  6 < l < 7,5 3 см
  l > 7,5 1/250

Данные измерений деформаций представляют в виде исполнительной схемы и журнала изменений. Они используются для составления заключения о техническом состоянии здания.

 

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: