Применение фракталов

Фракталы в цифровой технике.

         Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки. Для сжимающего изображения основная картинка остаётся неподвижной точкой.

Фракталы в сети.

        Принцип фрактального сжатия информации для компактного сохранения сведений об узлах сети «Netsukuku» использует система назначения IP-адресов. Каждый её узел хранит 4 килобайта информации о состоянии соседних узлов. Любой новый узел подключается к общей сети Интернет, не требуя центрального регулирования раздачи IP-адресов. Можно сделать вывод, что принцип фрактального сжатия информации обеспечивает децентрализованную работу всей сети, а потому работа в ней протекает максимально устойчиво.

Фракталы в графике.

      Фракталы широко применяются в компьютерной графике – при построении изображений деревьев, кустов, поверхности морей, горных ландшафтов, и других природных объектов. Благодаря фрактальной графике был изобретён эффективный способ реализации сложных неевклидовых объектов. Интересно, что кроме фрактальной «живописи» существуют так же фрактальная музыка и фрактальная анимация. В изобразительном искусстве существует направление, занимающееся получением изображения случайного фрактала – «фрактальная монотипия» или «стохатипия».

    Фракталы стали незаменимыми помощниками астрофизиков, медиков, геологов. Фрактальное моделирование как инструмент для изучения неупорядоченных систем, каковыми являются нефтегазовые месторождения, стало технологической потребностью. Фрактальные модели упрощают анализ движения жидкости или газа, что важно для индустриальных технологий разработки месторождений нефти и газа. Модели, построенные на основе фрактальных изображений, позволяют с большой точностью моделировать космическое пространство и ткани внутренних органов живых организмов.

       В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. А экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад).

 

 

Фракталам посвящены тысячи публикаций и огромные ресурсы в международной компьютерной сети Интернет, однако для многих специалистов далеких от математики и информатики данный термин представляется абсолютно новым. Поэтому, по моему мнению, фракталы должны получить надлежащее место в курсах математики и информатики.

  


ПРИЛОЖЕНИЕ


Дерево пифагора

Де́рево Пифаго́ра — разновидность фрактала, основанная на фигуре, известной как «Пифагоровы штаны».

Пифагор, доказывая свою знаменитую теорему, построил фигуру, где на сторонах прямоугольного треугольника расположены квадраты. Впервые дерево Пифагора построил А. Е. Босман (1891—1961) во время Второй мировой войны, используя обычную чертёжную линейку.

 

Губка менгера

Губка Менгера — геометрический фрактал, один из трёхмерных аналогов ковра Серпинского.

Каждая грань куба, имеющая единичную длину, делится на 9 равных квадратиков так же, как и при построении квадратного ковра Серпинского. В результате исходный куб разбивается на 27 одинаковых кубиков с длиной ребра, равной 1/3. Затем, удаляя 7 кубиков (один центральный и 6 из центра каждой из граней), проти­воположные грани исходного куба соединяются сквозным централь­ным отверстием квадратной формы. В результате из 27 остается 20 маленьких кубиков.

 

Кривая Леви — фрактал. Предложен французским математиком П. Леви. Получается, если взять половину квадрата вида /\, а затем каждую сторону заменить таким же фрагментом, и, повторяя эту операцию, в пределе получим кривую Леви.Стандартная кривая Леви строится с помощью равнобедренных треугольников с углами при основании 45°. Вариации кривой Леви можно построить с помощью равнобедренных треугольников с другими, отличными от 45° углами. До тех пор, пока угол меньше 60°, каждая новая линия короче той линии, из которой она образована, так что процесс строительства стремится к предельной кривой. Углы менее 45° производят фрактал, который менее плотно "свернут".

 

 

Кривая Коха — фрактальная кривая, описанная в 1904 году шведским математиком Хельге фон Кохом.

Три копии кривой Коха, построенные (остриями наружу) на сторонах правильного треугольника, образуют замкнутую кривую бесконечной длины, называемую снежинкой Коха.

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырёх звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д… Предельная кривая и есть кривая Коха.

 

 

Треугольник Серпинского — фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Вацлавом  Серпинским в 1915 году. Также известен как «решётка» или «салфетка» Серпинского.

Середины сторон равностороннего треугольника соединяются отрезками. Получаются 4 новых треугольника. Из исходного треугольника удаляется внутренность срединного треугольника. Получается множество , состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество , состоящее из 9 равносторонних треугольников второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность , пересечение членов которой есть треугольник Серпинского.

 

    8. Заключение.

Фракталы - это глубокая философская идея, впервые позволившая связать традиции востока и запада. К сожалению пока это жутко трудно понять, еще труднее объяснить.

Неизвестный философ

         Данная работа является введением в мир фракталов. Мы рассмотрели только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся. В результате проделанной работы выяснилось, что за фракталами таятся огромные, как художественные, так и практические перспективы развития.

         В моей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков, движение цен на бирже и развитие общества и семьи.

Вместе с тем я убедилась, что тем, кто занимается фракталами, открывается прекрасный, удивительный мир, в котором царят математика, природа и искусство.

    Я думаю, что после знакомства с моей работой, вы, как и я, убедитесь в том, что математика прекрасна и удивительна.

Литература

Бенуа Мандельброт, Фрактальная геометрия природы. М.: Институт компьютерных исследований. 2002

Мир математики. Т.10. Фрактальная геометрия. М.:ДеАгостини, 2014

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: