Репарация поврежденной ДНК

У бактерий имеются по крайней мере 3 ферментные системы, ведущие репарацию — прямая, эксцизионная и пострепликативная.

Прямая репарация — наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов.

Примером этого процесса является фотореактивация. Наиболее распространённым химическими изменениями, вызванных ультрафиолетовым облучением, являются образование циклобутан-пиримидиновых димеров (CPD) и пиримидин-пиримидиновых фотопродуктов (6-4PP-тиминовых димеров), когда два соседних пиримидиновых оснований ковалентно связываются друг с другом. Для удаления индуцированных ультрафиолетом повреждений ДНК у многих микроорганизмов применяются ферменты — ДНК-фотолиазы, специфично связывающиеся с CPD (CPD-фотолиаза) или с 6-4PP (6-4PP-фотолиазы) и исправляющие эти повреждения. Эти ферменты и активируются под действием видимого света.

Эксцизионная репарация включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы по комплементарной цепи. Ферментативная система удаляет короткую однонитевую последовательность двунитевой ДНК, содержащей ошибочно спаренные или поврежденные основания, и замещает их путём синтеза последовательности, комплементарной оставшейся нити.

Эксцизионная репарация базируется на распознавании модифицированного основания различными гликозилазами, расщепляющими N-гликозидную связь этого основания с сахарофосфатным остовом молекулы ДНК. При этом существуют гликозилазы, специфически распознающие присутствие в ДНК определенных модифицированных оснований.

Другой тип эксцизионной репарации — эксцизионная репарация нуклеотидов, предназначенная для более крупных повреждений, таких как образование пиримидиновых димеров. У прокариот эксцизионная репарация нуклеотидов осуществляется системой белков Uvr. Три из этих белков — UvrA, UvrB и UvrC — образуют эндонуклеазу, известную как UvrABC-эндонуклеаза.

Пострепликативная репарация - тип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей повреждённые участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA. Это единственный тип репарации, не имеющий этапа узнавания повреждения.

 

 

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 15 

 

Виды трансдукции

Трансдукция – передача бактериальной ДНК посредством бактериофага. В процессе репликации фага внутри бактерий фрагмент бактериальной ДНК проникает в фаговую частицу и переносится вместе с ней в бактерию-реципиент. При этом фаговые частицы как правило дефектны, они теряют способность к репродукции. Так как трансдуцируются лишь небольшие фрагменты ДНК, вероятность рекомбинации, затрагивающей какой-то определенный признак, очень мала: она составляет от 10-6до 10-8. Существуют три типа трансдукции:

 

Общая (неспецифическая) трансдукция – перенос бактериофагом фрагмента любой части бактериальной хромосомы. В клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов может проникнуть фрагмент бактериальной ДНК или плазмиды либо вместе с вирусной ДНК, либо вместо нее. Этот процесс происходит вследствие того, что бактериальная ДНК фрагментируется после фаговой инфекции и кусочек бактериальной ДНК того же размера, что и фаговая ДНК, проникает в вирусную частицу с частотой приблизительно 1 на 1000 фаговых частиц. Феномен неспецифической трансдукции может быть использован для картирования бактериальной хромосомы.

 

Специфическая трансдукциянаблюдается в том случае, когда фаговая ДНК интегрирует в бактерию с образованием профага. При исключении ДНК фага из бактериальной хромосомы в результате случайного процесса захватывается прилегающий к месту включения фаговой ДНК фрагмент бактериальной хромосомы. Так как большинство умеренных фагов интегрируют в бактериальную ДНК в специфических участках, для таких бактериофагов характерен перенос в клетку-реципиент определенного участка бактериальной ДНК донора. Специфическая трансдукция может служить механизмом переноса вирулентных генов среди бактерий при условии, что эти гены локализованы в непосредственной близости от мест интеграции профага.

 

Абортивная трансдукция.При абортивной трансдукции внесенный фрагмент ДНК донора не встраивается в хромосому реципиента, а остается в цитоплазме и там самостоятельно функционирует. Впоследствии он передается одной из дочерних клеток (т.е. наследуется однолинейно) и затем теряется в потомстве.

 

R-плазмиды или факторы резистентности

R-плазмиды — R–фактор, фактор резистентности (англ. resistance — устойчивость) детерминируют множественную резистентность к антимикробным препаратам. R–плазмиды имеют более сложное строение, в их состав входит r–оперон, который может содержать более мелкие мигрирующие элементы (IS–последовательности, транспозоны и tra-опероны).

Трансмиссивные R–плазмиды содержат 2 области генов: гены, контролирующие лекарственную резистентность и гены, контролирующие перенос R–плазмид при конъюгации (у Грам- бактерий).

Нетрансмиссивные R–плазмиды передаются при трансформации, при трансдукции (у Г+ бактерий), при конъюгации в случае интеграции с трансмиссивными плазмидами.

R-плазмиды могут передаваться бактериям других видов, так как критерий репродуктивной изоляции отсутствует. Передача R–плазмид привела к их широкому распространению среди патогенных и УП бактерий, что чрезвычайно осложнило химиотерапию вызываемых ими заболеваний.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: