double arrow

Оценка эксперта: 2 балла.

2

Пример 3.

На доске написано 30 натуральных чисел (числа могут повторяться), каждое из которых либо зелёного, либо красного цвета. Каждое зелёное число кратно 3, а каждое красное число кратно 7. При этом все зелёные числа различны
и все красные различны (какое-то зелёное число может равняться какому-то красному числу).

а) Может ли сумма написанных чисел быть меньше , если все числа на доске кратны 3?

б) Может ли ровно одно число на доске быть красным, если сумма написанных чисел равна 1067?

в) Какое наименьшее количество красных чисел может быть на доске, если сумма написанных чисел равна 1067?

Ответ: а) да; б) нет; в) 6.

Комментарий.

Обоснованно получен ответ в пунктах а и б. В пункте в неверное обоснование, поскольку не доказано, что набор с минимальным количеством красных чисел получается заменой максимальных чисел из набора 3, 6, ..., 90 на минимально возможные различные красные числа. Кроме того, разница между пятью самыми большими зелеными числами и пятью самыми маленькими красными числами составляет 315.


Оценка эксперта: 2 балла.



2




Сейчас читают про: