Возрастные особенности мужской репродуктивной системы

Семенники начинают свою генеративную функцию еще в препубертатном возрасте, однако в этот период времени сперматогенез блокируется на этой начальной стадии. Полное завершение сперматогенеза (образование сперматозоидов) наступает лишь после достижения половой зрелости — пубертатного периода. У новорожденного младенца семенные канальцы еще имеют вид сплошных клеточных тяжей и состоят из поддерживающих клеток и сперматогоний. Такое строение семенные канальцы сохраняют в течение первых 4 лет постнатального периода развития мальчика. Просвет в клеточных тяжах образуется только к 7-8 годам жизни. В этот период количество сперматогоний стремительно растет, а около 9 лет среди них появляются одиночные сперматоциты 1-го порядка, что указывает на начало второй стадии сперматогенеза — стадии роста. Между 10 и 15 годами семенные канальцы становятся извитыми: в их просветах обнаруживаются сперматоциты 1-го и 2-го порядка и даже сперматиды, а поддерживающие клетки достигают полной зрелости. К 12-14 годам заметно усиливается рост и развитие выводящих протоков и придатка семенника, что свидетельствует о поступлении в циркуляцию мужского полового гормона в достаточно высокой концентрации. В соответствии с этим в семенниках отмечается большое количество крупных интерстициальных клеток.

Возрастная инволюция семенника у мужчин происходит между 50 и 80 годами. Она проявляется в нарастающем ослаблении сперматогенеза, разрастании соединительной ткани. Однако даже в пожилом возрасте в некоторых семенных канальцах сохраняется сперматогенез и их строение остается нормальным.

Параллельно прогрессирующей атрофии эпителиосперматогенного слоя увеличивается деструкция гландулоцитов (клеток Лейдига), вследствие чего ослабевает продукция мужского полового гормона, а это в свою очередь оказывается причиной возрастной атрофии предстательной железы и частично наружных половых органов. С возрастом в цитоплазме интерстициальных клеток (клеток Сертоли) начинает откладываться пигмент.

Недостаточная эрекция при физиологическом климаксе, как правило, сочетается с затруднением эякуляции, а при патологическом климаксе — с преждевременным семяизвержением.

Выделяют два основных типа половых расстройств при патологическом климаксе. Первый обусловлен преимущественно нарушением корковой нейродинамики и проявляется так называемым синдромом раздражительной слабости. При этом в результате быстро наступающей эякуляции половой акт не может быть выполнен в полном объеме. При втором (на фоне нервных нарушений) — на первый план выступают гормональные сдвиги, способствующие расстройству эрективной и эякуляторной функций; часто наблюдается полная импотенция.

 

                 Физиология оплодотворения

Оплодотворением называется процесс слияния зрелых мужской (сперматозоид) и женской (яйцеклетка) половых клеток, в результате чего возникает зигота, несущая генетическую информацию как отца, так и матери.

Процесс созревания мужских и женских половых клеток очень сложен. Сперматогенез совершается в извитых семенных канальцах мужских гонад. Он завершается в период половой зрелости образованием зрелых сперматозоидов, обладающих способностью к оплодотворению. Полному созреванию предшествует процесс редукционного деления, в результате которого в ядре сперматозоида содержится гаплоидный набор хромосом.

Сперматозоиды бывают двух видов: носители половых Х- и Y-хромосом. При слиянии с яйцеклеткой сперматозоида, являющегося носителем половой Х-хромосомы, из образующейся зиготы развивается эмбрион женского пола, при слиянии сперматозоида, имеющего половую Y-хромосому, возникает зародыш мужского пола (яйцеклетка всегда является носительницей половой Х-хромосомы).

Развитие яйцеклеток связано с ростом и развитием первичных фолликулов, находящихся в корковом слое яичников. Созревание яйцеклетки условно можно разделить на созревание ядра и созревание цитоплазмы. Под созреванием ядра понимают совокупность процессов, переводящих ядро из стадии диплотена I (или стадии герминативного пузырька) до метафазы второго мейотического деления. Созревание ядра не включает в себя завершение мейоза, так, как только проникновение сперматозоида внутрь яйцеклетки вызывает завершение второго редукционного деления.

От периода наступления полового созревания до менопаузы у женщины в каждом менструальном цикле обычно созревает одна яйцеклетка. Ооцит первого порядка превращается в ооцит второго порядка при отщеплении первого полярного тельца. В момент овуляции ооцит второго порядка оказывается блокированным на стадии метафазы второго мейотического деления. Созревание яйцеклеток стало известно в деталях благодаря возможности культивирования яйцеклеток in vitro, что в настоящее время широко используют при экстракорпоральном оплодотворении.

Перед оплодотворением зрелая яйцеклетка со всех сторон окружена лучистым венцом (corona radiata). Отчетливо заметна блестящая оболочка (zona pellucida). Уже через несколько минут после разрыва фолликула (овуляции) яйцеклетка попадает в полость маточной трубы. Этому процессу способствует ряд факторов: "захват" ее фимбриями маточной трубы со стороны яичника, в котором произошла овуляция, направление тока фолликулярной жидкости при разрыве фолликула и др. Этим факторам принадлежит очень важная роль в первоначальном транспорте яйцеклетки, которая лишена самостоятельной подвижности. Способность яйцеклетки к оплодотворению в среднем составляет 24 ч. Современные методы диагностики (ультразвуковое исследование, лапароскопия) позволяют не только наблюдать за процессом овуляции, но и фиксировать этот процесс на фотопленку. Яйцеклетка, попавшая в ампулярный отдел маточной трубы, быстро окружается большим количеством сперматозоидов, являющихся носителями как Х-, так и Y-половых хромосом. Под микроскопом сперматозоиды с Х-хромосомой имеют несколько более крупные размеры, чем несущие Y-хромосому. Сперматозоиды, окружающие яйцеклетку, начинают пенетрировать в клетки лучистого венца. Процесс пенетрации обусловлен наличием ряда ферментов, которые содержатся как в головке сперматозоида, так и в трубной жидкости

Сразу же после слияния мембран половых клеток происходит кортикальная реакция яйцеклетки, являющаяся составной частью обеспечения блока полиспермии. После этого хромосомы зиготы вступают в первое митотическое деление, которое наступает через 24 ч после начала оплодотворения. Ядро оплодотворенной яйцеклетки (зиготы) содержит диплоидный набор хромосом (46). Таким образом, новый организм является носителем генетической информации обоих родителей.

После оплодотворения (через 24 ч) начинается дробление оплодотворенной яйцеклетки. Первоначально дробление имеет синхронный характер. Через 12 ч от начала возникновения 2 бластомеров возникают 4 бластомера и т.д. К 96 ч от момента слияния ядра сперматозоида с ядром яйцеклетки зародыш состоит из 16—32 бластомеров (стадия морулы). На этой стадии оплодотворенное яйцо (зигота) попадает в матку.

Поскольку дробящаяся яйцеклетка не обладает самостоятельной подвижностью, ее транспорт определяется взаимодействием сократительной активности маточной трубы (основной фактор), движениями цилиарного эпителия эндосальпинкса и капиллярным током жидкости в направлении от ампулярного конца маточной трубы к матке.

Проделав путь по маточной трубе в течение 4 суток, плодное яйцо на стадии морулы попадает в матку, где превращается в бластоцисту. Стадия бластоцисты характеризуется тем, что бластомеры подвергаются определенным изменениям. Часть бластомеров, более крупных по своим размерам, образует так называемый эмбриобласт, из которого в дальнейшем развивается эмбрион. Другая часть клеток, более мелких и располагающихся по периферии плодного яйца, образует питательную оболочку — трофобласт. В дальнейшем наиболее развитая часть трофобласта превращается в плаценту. В полости матки бластоциста приближается к месту имплантации (нидации). Локализация имплантации имеет свои закономерности и, по-видимому, в значительной степени определяется местными особенностями эндометрия. Обычно бластоциста имплантируется в области передней или задней стенки матки. Затем начинается погружение бластоцисты в эндометрий, который к этому времени превращается в децидуальную оболочку.

Децидуальная оболочка представляет собой видоизмененный функциональный слой эндометрия. К моменту имплантации оплодотворенной яйцеклетки слизистая оболочка матки находится в секреторной фазе, железы пилообразно изменены и заполнены секретом, клетки стромы имеют округлый вид и содержат большое количество гликогена, липидов, нейтральных мукополисахаридов, солей и микроэлементов, ферментов и их ингибиторов, иммуноглобулинов и многие другие биологически активные соединения, необходимые для жизнедеятельности зародыша.

Процесс имплантации в первую очередь связан с гормональными факторами. Ведущая роль принадлежит половым (стероидным) гормонам. Во время беременности происходит развитие и активное функционирование желтого тела яичника, возникшего на месте лопнувшего фолликула. Желтое тело секретирует большое количество прогестерона и несколько меньшее — эстрогенов. Эти половые гормоны через специфические стероидные рецепторы, находящиеся в эндометрии, оказывают выраженное воздействие на секреторные преобразования слизистой оболочки матки и процессы ее децидуализации. Кроме стероидных, определенную роль в имплантации играют и некоторые другие гормоны (пролактин, глюкокортикоиды).

Децидуальная ткань как своеобразный эндокринный орган имеет прямое отношение к имплантации и дальнейшим стадиям постимплантационного развития зародыша. Установлено, что эндометрий женщины вырабатывает иммунореактивный пролактин. Он начинает секретироваться с 9-го дня после овуляции, при этом во время беременности продукция тканевого пролактина значительно повышается, поэтому в настоящее время некоторые исследователи склонны рассматривать децидуальную ткань как своеобразный эндокринный орган.

Процесс имплантации, который в среднем продолжается около 2 дней, сопровождается не только значительными изменениями клеточных элементов желез и стромы эндометрия, но и выраженными гемодинамическими сдвигами местного характера. Вблизи места имплантации бластоцисты отмечается расширение кровеносных сосудов и образование синусоидов, представляющих собой расширенные капилляры и венулы. Этим процессам принадлежит большая роль в процессах обмена между материнским организмом и зародышем. После имплантации происходит быстрое развитие как зародыша, так и его оболочек.

На ранних стадиях развития происходит и дифференцировка мезенхимы. С одной стороны клетки мезенхимы оттесняются на периферию — к трофобласту. С другой стороны происходит скопление мезенхимальных клеток вокруг амниотического и желточного пузырьков, а также около зародыша. В результате этого стенки пузырьков становятся двухслойными, а сам зародыш дифференцируется в экзо-, эндо- и мезодерму. Эти три зародышевых листка служат исходным материалом для формирования в дальнейшем всех органов и тканей эмбриона и плода.

По мере дальнейшего внутриутробного развития происходит быстрое увеличение размеров амниотического пузырька, который превращается в амниотическую полость. В полости наблюдается быстрое накопление прозрачной жидкости (амниотическая жидкость), при этом стенка амниотического пузырька приближается к ворсинчатой оболочке и, наконец, сливается с ней. Зародыш начинает вворачиваться в полость амниона, а желточный пузырек атрофируется.

Одновременно с развитием плодных оболочек из каудального отдела первичной кишки зародыша образуется выпячивание — аллантоис. По аллантоису сосуды зародыша "подрастают" к ворсинчатой оболочке, врастая затем в каждую ворсину. В результате этого бессосудистый хорион васкуляризируется.

После завершения начальных этапов онтогенеза эмбрион окружен амниотической жидкостью и тремя оболочками: децидуальной, ворсинчатой и водной.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: