Рис. 61. Глинистые вермикуляции на стенах Красной пещеры, Крым

 

История остаточных отложений - история капли воды. В карстующихся породах в небольших количествах (1-10%) обязательно содержится примесь песка или глины, состоящая из SiO2, Al2O3, Fe2O3. При растворении известняков или гипсов нерастворимый остаток накапливается на стенах трещин, сползает на дно галерей, смешивается с другими пещерными отложениями. Карстолог Ю. И. Шутов подсчитал, что из одного кубического метра юрских известняков, слагающих Крымские горы (вес его около 2,7 т), образуется 140 кг глины (0,05 м3). Исследования показали, что она сложена минералами иллитом, монтмориллонитом, каолинитом, полевым шпатом, кварцем. От их соотношения зависят свойства глин: часть из них набухает при увлажнении, закупоривая мелкие трещины, часть, напротив, легко отдает воду и быстро осыпается со стенок. Иногда в образовании налетов глины на стенках принимают участие и бактерии: в 1957 г. французский исследователь В. Комартен доказал, что некоторые виды микробов могут получать углерод непосредственно из известняка (СаСО3). Так на стенах пещер образуются червеобразные или округлые углубления - "глинистые вермикуляции", заполненные продуктами, непригодными даже для бактерий (рис. 61).

Остаточные отложения не имеют практического значения. Исключение, пожалуй, представляет случай, когда пещера находится неподалеку от действующих карьеров, где полезные ископаемые добываются взрывным способом. После сильных взрывов, эквивалентных местному сейсмическому толчку силой до 7 баллов, глины могут сползать со стенок трещин, временно закупоривая водопроводяшие каналы источников. Известны случаи, когда их расход падал до нуля, а затем из источников начинала идти "красная вода", выносящая взвешенные глинистые частицы...

9.2. В грохоте обвалов

В фундаментальной сводке Г. А. Максимовича /19/ обвальным отложениям посвящено всего 5 строчек... Считалось, что они не несут почти никакой информации. Исследования 60-90 гг. показали, что это не так. Они подразделяются на три группы разного происхождения.

Термогравитационные отложения образуются только у входа в пещеру, там, где велики суточные и сезонные колебания температур. Их стены "шелушатся", присводовая часть полости растет, а на ее полу накапливаются щебенка и мелкозем. Немецкий спелеолог И. Штрайт, потратив более десятка лет и применив изощренные математические методы обработки материалов, доказал, что количество этого материала, его состав, размеры, форма частиц, число их ребер и граней хранят зашифрованную информацию об изменениях климата района на протяжении десятков тысяч лет. Среднеазиатские карстоведы по пятнам этих отложений, выделяющимся на голом склоне, уверенно обнаруживают с противоположного склона малозаметные входы в пещеры.

Обвально-гравитационные отложения формируются на всем протяжении пещер, но особенно обильно - в зонах тектонической трещиноватости. Щебенка, дресва, небольшие глыбы, упавшие со сводов, дают представление о геологическом строении высоких залов, которое трудно изучить непосредственно (для исследования купола Большого зала в Карлсбадской пещере США американский спелеолог Р. Кербо использовал даже воздушный шар!).

Наибольший интерес представляют провально-гравитационные отложения. Смена предлогов имеет большой смысл: при обвале на дне галереи накапливается только тот материал, который имеется в самой пещере; при провале свода в нее поступает материал с поверхности, а при обрушении междуэтажных перекрытий возникают огромные залы... Эти отложения представлены блоками и глыбами весом в сотни тысяч тонн. Участки пещер, где они встречаются, представляют фантастическое зрелище. Многие из них настолько неустойчивы, что угрожающе скрипят, когда на них поднимается спелеолог.

Красновато-бурая поверхность известняков покрыта белыми "звездами" - следами ударов упавших камней. Неуютно чувствует себя человек в этом хаосе. Но часто и здесь можно найти как-то сразу успокаивающие закономерности...

В 1989 г. симферопольские спелеологи обнаружили, а в 90-е исследовали и оборудовали для экскурсий одну из самых красивых пещер Крыма - Мраморную на Чатырдаге. В ее центральной части располагается самый большой в Крыму обвальный зал (площадь - половина футбольного поля!), получивший в духе времени ироническое название зала Перестройки. К нашему удивлению, в хаосе его глыб наметился порядок: одни из них лежат горизонтально, другие - наклонены под углами 30-60°, третьи - перевернуты "вверх ногами", и некогда наросшие на них сталактиты сейчас превратились в "сталагмиты"... Секрет в том, что слагающие пещеру известняки сами падают под углом 30°. Поэтому при отрыве пласта в своде зала он смещается шарнирно, с поворотом и даже переворотом.

Кроме блоков и глыб к провально-гравитационным отложениям относятся еще поваленные натечные колонны. Лучше других они изучены в сейсмических районах - в Крыму, на юге Франции, на севере Италии. При этом удалось установить прямые и обратные связи карстоведения и сейсмологии. Сильные землетрясения вызывают обрушение сводов пещер. Если образующиеся при этом блоки и глыбы трудно напрямую связать с ними, то ориентированные поваленные колонны иногда уверенно указывают на эпицентры землетрясений. Так, в Крыму описано около 60 колонн, лежащих на горизонтальном полу (это очень важно, так как на наклонных полах они могут откатиться и сменить ориентировку). 40% их тяготеет к Судакской, 40% - к Ялтинской и по 10% - к Алуштинской и Севастопольской эпицентральным зонам. Это свидетельствует о миграции очагов сильных землетрясений в антропогене от Судака до Севастополя. К сожалению, пока не найдена расчетная схема, позволяющая объяснить механизм смещения гигантов, имеющих длину до 8 м (шахта Монастыр-Чокрак), диаметр до 3 м (Красная пещера) и вес до 70 т (шахта Мира). Ясно только, что они были сильнее, чем землетрясения исторического периода.

Когда происходили такие землетрясения? Спелеология и здесь дает сейсмологам надежный метод датировки. Натечные колонны - "минералогические" отвесы, в которых зафиксировано положение геофизической вертикали данной местности на протяжении всего ее роста. Если после падения на них нарастают сталактиты или сталагмиты (рис. 62), то по их возрасту, определенному любым абсолютным методом (радиоуглеродным, ядерно-магнитного резонанса и пр.), можно определить возраст колонны ("не ранее чем..."). По Крыму пока есть только две радиоуглеродные даты, дающие для поваленных колонн зала Перестройки возраст 10 и 60 тысяч лет. В других пещерах мира этот диапазон еще шире - от 10 до 500 тыс. лет...

Обратная связь карста и сейсмологии проявляется в том, что при провале свода пещеры образуются блоки весом до 2- 3 тысяч тонн. Удар о пол при падении с высоты 10-100 м высвобождает энергию, составляющую 1x1015 - 1017 эрг, что соизмеримо с энергией землетрясений (ташкентское землетрясение 1966 г.- 1х1018 эрга). Правда, она локализуется в небольшом объеме породы, но может вызвать ощутимое местное землетрясение силой до 5 баллов.

Спелеологические методы уточнения карт сейсмического районирования широко использовались во Франции при определении мест размещения атомных электростанций. Такие же работы, существенно изменившие первоначальные представления специалистов, были проведены в 90-е гг. в Крыму. Это лишний раз доказывает, что в природе все взаимосвязано и нет естественных объектов, не несущих полезную информацию. Надо только уметь получить ее.

Чтобы закончить эту тему, коротко коснемся еще одного вопроса. В какой мере землетрясения опасны для работающего под землей спелеолога? Сведения по этому поводу немногочисленны, но наводят на раздумья. Во время крымского землетрясения 1927 г. в шахте Эмине-Баир-Хосар на Чатырдаге находилась группа из гидрогеологического отряда П. М. Васильевского. Она вообще не ощутила семибалльный толчок, который вызвал панику среди их проводников на поверхности. 1.05.1929 г. во время Гермабского землетрясения (9 баллов) в Бахарденской пещере находились экскурсанты. Они услышали нарастающий гул, со стен посыпались отдельные камешки, по озеру у их ног пошли пологие волны... Землетрясение Вранча 4.03.1977 г. (8 баллов) ощущалось в пещере Топчика (Болгария) лишь по слабому колебанию уровня и температуры воды в подземном водотоке. Казалось бы, ясно: даже самые сильные сейсмические толчки под землей затухают (явление "декаплинга", доставившее немало хлопот при подписании договора о запрещении ядерных взрывов). Но не будем спешить с выводами. По свидетельству Л. И. Маруашвили, во время Балдинского землетрясения 1957 г. была заполнена обрушившейся породой и прекратила существование как географический объект карстовая шахта Ципурия (Грузия). После землетрясения 27.08.1988 г. в шахте Весенняя (Бзыбский массив, Грузия) произошло смещение глыбового завала на глубине 200 м. Спелеологи, только что выбравшиеся из него, уцелели лишь по счастливой случайности. Нет, с землетрясениями шутки плохи - и на земле, и под землей...

9.3. Порождение движущейся воды

Следующая примечательная группа отложений пещер - водные механические отложения. Знакомство с ними также не доставит большого удовольствия неспециалисту. В Красной пещере есть озера, где почти по пояс погружаешься в вязкую глину, часто оставляя в ней подошву ботинка, а то и нижнюю часть гидрокомбинезона... Но геолог видит в этих отложениях источник разнообразных сведений об условиях "жизни" карстовых полостей. Для их получения, прежде всего, необходимо изучить состав отложений.

Минералогический анализ иногда сразу дает ответ на вопрос, откуда поступает вода. Если состав отложений соответствует составу минералов вмещающих пород, то пещера сформирована местными, автохтонными потоками. Поэтому еще в далеком 1958 году, только начиная исследования Красной пещеры, мы уже знали, что начало ее надо искать на плато Долгоруковского массива, в шахте Провал,- ведь только в пределах питающего ее водосбора есть кварцевая галька. Изучая пещеры долины Косцельской в Татрах, польские спелеологи обратили внимание на то, что пещеры, находящиеся в одном месте, но на разной высоте над дном долины, имели разный состав песчаного заполнителя: чем ближе ко дну, тем богаче спектр находимых в нем минералов... Изучение палеогеографии района показало, что это связано с глубиной врезания реки, постепенно "добравшейся" до водосборов центральной части Татр, сложенных некарстующимися породами.

Конечно, при детальных исследованиях эта схема выглядит значительно сложнее. Приходится отбирать сотни проб, разделять их на фракции по размеру, удельному весу, магнитным и прочим свойствам, определять и подсчитывать под микроскопом содержание отдельных минеральных зерен и т. д. Наградой бывают удивительные находки. В пещерах Крыма неожиданно обнаружены минералы: муассанит, когенит, иоцит, до того известные только в метеоритах; в пещерах Болгарии обнаружены прослои вулканического пепла, которые есть основания связывать со взрывом вулкана на о-ве Санторин в Эгейском море в 25 и 4-1 тысячелетиях до н. э.

Так протянулась ниточка, связывающая исследователей пещер XX века с проблемами Атлантиды и гибели минойской культуры...

Второе направление исследований водных механических отложений - изучение их крупности. Она может быть различной - от метровых валунов, иногда находимых в пещерах, образованных ледниковыми потоками, до тончайшей глины, частицы которой имеют микронные размеры. Естественно, и методы их исследований разные: прямой обмер, использование набора сит, применение обычных и ультрацентрифуг. Что же дают все эти, часто длительные и дорогие, работы? Основное - восстановление древних палеогеографических условий существования пещер. Между скоростью подземных потоков, диаметром каналов, по которым они движутся, и размерами переносимых частиц имеются связи, выражаемые довольно сложными формулами. В их основе лежат все те же уравнения неразрывности потока Бернулли, "помноженные" на не менее известное уравнение Стокса, описывающее скорость оседания частиц в стоячей воде разной температуры и плотности. В результате получается красивая номограмма, предложенная чешским спелеологом Р. Буркхардтом,- график, по которому, зная площадь поперечного сечения хода и диаметры частиц, отложившихся на его дне, можно оценить среднюю и максимальную скорость и расход некогда бушевавших здесь потоков (рис. 63).


Рис. 63. Номограмма (по Р. Буркхардту).Определение скорости (V) и расхода (Q) подземного потока по крупности песчано-галечниковых отложений (Md) и площади сечения хода (S). Пунктир - ключ к диаграмме

 

Изучение водных механических отложений позволяет дать ответ и на некоторые теоретические проблемы, в частности вопрос о том, в какой гидродинамической зоне закладывалась данная пещера. В 1942 г., обнаружив на дне ряда пещер США тонкую глину, опытный геолог и спелеолог Дж. Бретц предположил, что они образованы путем растворения известняков медленно текущими водами: ведь только в них возможно осаждение глинистых частиц! Через 15 лет, выкопав в десятках этих же пещер глубокие шурфы, карстовед Девис установил, что жирные глины лишь венчают очень сложный многометровый разрез заполнителя. Под глинами располагались слои песка и гравия, принесенные мощным потоком, затем следовала натечная кора, которая могла образоваться только при длительном осушении пещеры, ниже - опять в разрезе появлялась глина, ложащаяся на валуны... Так водные механические отложения помогают специалистам "прочитать" историю развития пещер.

9.4. "Капь верхняя" и "капь нижняя"

Термины "сталактит" и "сталагмит" (от греческого "сталагма" - капля) ввел в литературу в 1655 г. датский натуралист Олао Ворм. Через сто лет в русской литературе появилось не менее образное определение Михаила Ломоносова: "капь"... Действительно, эти образования связаны с капельной формой движения воды. Мы уже знаем некоторые особенности поведения капли как жидкости. Но это не просто вода, а раствор, содержащий те или иные компоненты. Когда в основании обводненной трещины формируется капля раствора, это не только борьба силы поверхностного натяжения и силы тяжести. Одновременно начинаются химические процессы, приводящие к выпадению на контакте раствора и горной породы микроскопических частиц карбоната кальция. Несколько тысяч капель, сорвавшиеся с потолка пещеры, оставляют после себя на контакте порода/раствор тонкое полупрозрачное колечко кальцита. Следующие порции воды уже будут образовывать капли на контакте кальцит/раствор. Так из колечка образуется все удлиняющаяся трубочка. Самые длинные трубочки (брчки) 4-5 м (пещера Гомбасек, Словакия). Казалось бы, несложна и химическая суть процесса - обратимая реакция

СаСО3 + Н2О + СО2 <- -> Са2+ + 2НСО-3. (1)

При растворении известняка реакция идет вправо, с образованием одного двухвалентного иона Са и двух одновалентных ионов НСО3. При образовании натеков реакция идет влево и из этих ионов образуется минерал кальцит. Но и здесь есть "подводный камень", и даже не один...

Во многих учебниках по географии и геологии образование сталактитов объясняют испарением воды. Не избежал этой ошибки в своих ранних работах и А. Е. Ферсман. Но мы уже знаем, что в пещерах дефицит насыщения воздуха влагой близок к 0. В таких условиях преобладает не испарение, а конденсация.

Реакция (1) на деле идет в несколько стадий. Сперва вода взамодействует с углекислым газом:

Н2О + СО2 = Н2СО3 <- -> Н+ + НСО-3. (2)

Но угольная кислота слабая и поэтому диссоциирует на ион водорода (Н+) и на ион НСО-3. Ион водорода подкисляет раствор, и только после этого начинается растворение кальцита. Значит, в формуле (1) только один ион НСО3 поступает из породы, а второй - не связан с нею и образуется из привнесенных в карстовый массив воды и углекислого газа. Это на 20-30% уменьшает расчетную величину активности карстового процесса. Рассмотрим лишь один простой пример. Пусть сумма всех ионов, находящихся в воде, составляет 400 мг/л (в том числе - 200 мг/л НСО3). Если мы используем анализ для оценки питьевой воды, то в расчет включаются все 400 мг/л (нам все равно, откуда взялись отдельные компоненты, находящиеся в воде, важно, что они там есть). Но если по этому анализу рассчитывать интенсивность карстового процесса, то в расчет следует включать сумму ионов минус половина содержания иона НСО3 (400-100 = 300 мг/л). Такие ошибки в расчетах имеются в работах многих карстологов мира, в том числе имеющих высокие научные степени и звания.

Затем необходимо оценить, какой перепад парциальных давлений СО2 имеется в системе. В 40-50 гг. считалось, что карстовый процесс идет только за счет СО2, поступающего из атмосферы. Но в воздухе земного шара его всего 0,03-0,04 объемных % (давление 0,0003-0,0004 мм рт. ст.), и колебания этой величины по широте и по высоте над уровнем моря незначительны. А между тем давно подмечено, что более богаты натеками пещеры умеренных широт и субтропиков, а в пещерах высоких широт и больших высот их совсем мало... Изучение состава почвенного воздуха, выполненное группой венгерского спелеолога Ласло Якуча, показало, что содержание СО2 в нем 1-5 объемных %, то есть на 1,5-2 порядка больше, чем в атмосфере. Немедленно возникла гипотеза: сталактиты образуются при перепаде парциального давления СО2 в трещинах (такое же, как в почвенном воздухе) и воздухе пещер, имеющего атмосферное содержание СО2. Последнюю коррективу внесло непосредственное определение СО2 в воздухе пещер. Окончательный "диагноз" гласит: сталактиты образуются в основном не при испарении влаги, а при наличии градиента парциального давления СО2 от 1-5% (почвенный воздух и вода в трещинах) до 0,1-0,5% (воздух в пещерах).

Пока питающий канал сталактита открыт, по нему регулярно поступают капли. Срываясь с его кончика, они образуют на полу одиночный сталагмит. Происходит это довольно медленно (десятки - сотни лет), и поэтому такие тянущиеся другу к другу формы во многих оборудованных пещерах мира получили образное название "вечных любовников". Когда питающий канал зарастет, будет забит глиной или песчинками, одного из любовников ожидает "инфаркт" - повышение гидростатического давления в канале. Его стенка прорывается, и сталактит продолжает расти уже за счет стекания пленки растворов по его внешней стороне (рис. 64). Если вода высачивается вдоль плоскостей напластования и наклонных трещин в своде - возникают ряды сталактитов, бахрома и занавеси самых причудливых форм и размеров.

В зависимости от постоянства водопритока и высоты зала под капельниками образуются одиночные сталагмиты-палки высотой 1-2 м и диаметром 3-4 см; "расплющенные", похожие на пни спиленных деревьев, или конусовидные, напоминающие башни или пагоды формы. Это самые крупные натечные образования пещер, имеющие размеры в несколько десятков метров. Самым высоким сталагмитом в мире сейчас считается 63-метровый гигант в пещере Лас Вильяс (Куба), а в Европе - 35,6-метровый, в пещере Бузго в Словакии. При срастании сталактитов и сталагмитов образуются сталагнаты, постепенно превращающиеся в колонны. Отдельные из них достигают 30-40 м (высота) и 10-12 м (диаметр). При стекании в виде пленок и плоских потоков образуются каскадные натеки самых разных форм и размеров.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: