Генетическое действие ионизирующих излучений

Ионизирующее излучение - одно из уникальных явлений окружающей среды, последствия от воздействия которого на организм совершенно неэквивалентны величине поглощаемой энергии. Летальная доза для млекопитающих составляет 10 Гр (1000 рад), поглощаемая же при этом тканями и органами животных энергия могла бы повысить их температуру всего на тысячные доли градуса. Вместе с тем известно, что ни один из субстратов клетки in vitroне является столь радиочувствительным, как вся клетка in vivo. В связи с указанными обстоятельствами в настоящее время выдвигается гипотеза о возможности существования цепных автокаталитических реакций, усиливающих первичное действие, или о наличии в клетках систем положительных обратных связей, которые после возникновения поддерживаются независимо от существования породившей их причины [5].

Процессы взаимодействия ионизирующих излучений с веществом клетки, в результате чего образуются ионизированные и возбужденные атомы и молекулы, являются первым этапом развития лучевого поражения. Ионизированные и возбужденные атомы и молекулы в течение 10-6 с взаимодействуют между собой и с различными молекулярными системами, давая начало химически активным центрам (свободные радикалы, ионы, ион-радикалы и др.). В этот же период возможно образование разрывов связей в молекулах за счет как непосредственного взаимодействия с ионизирующим агентом, так и внутри- и межмолекулярной передачи энергии возбуждения.

В дальнейшем развиваются реакции химически активных веществ с различными биологическими структурами, при которых отмечаются как деструкция, так и образование новых, несвойственных облучаемому организму соединений. Последующие этапы развития лучевого поражения проявляются в нарушении обмена веществ в биологических системах с изменением соответствующих функций. У высших организмов это протекает на фоне нейрогуморальной реакции на развитие нарушения. Явления, происходящие на начальных, физико-химических этапах лучевого воздействия, принято называть первичными, или пусковыми, поскольку именно они определяют весь дальнейший ход развития лучевых поражений.

Мутагенное воздействие ионизирующей радиации впервые установили советские ученые Г.А. Надсон и Г.С. Филатов в 1925 г. в опытах на дрожжах. В 1927 г. это открытие было подтверждено Г. Меллером на классическом генетическом объекте - дрозофиле.

Ионизирующие излучения способны вызывать все виды наследственных перемен или мутаций. К ним относятся геномные мутации (кратные изменения гаплоидного числа хромосом), хромосомные мутации или хромосомные аберрации (структурные и численные изменения хромосом) и точковые или генные мутации (изменения молекулярной структуры генов). Спектр мутаций, индуцированных ионизирующими излучениями, не отличается от спектра спонтанных мутаций.

Генные мутации. На основании количественного учета генных мутаций была установлена зависимость частоты их возникновения от дозы облучения. Многочисленные опыты с лабораторными животными позволили сделать вывод, что частота летальных мутаций в половых клетках возрастает прямо пропорционально дозе ионизирующего излучения. Экстраполяция этих данных приводит к выводу о том, что любая сколь угодно малая доза ионизирующего излучения повышает частоту мутаций по сравнению с уровнем спонтанных мутаций. На ранних этапах оценки эффектов облучения по частоте возникновения мутаций считалось, что фракционирование дозы дает такой же эффект, как и доза однократного облучения [4].

Исследования последних лет, проведенные с облученными мышами, радикально изменили эту точку зрения. Полученные результаты позволили предположить, что между индукцией первичного повреждения и его конечной реализацией происходит репарация и что удлинение экспозиции или фракционирование дозы менее 8 мГр-мин-1 (до 0,007 мГр-мин-1) при воздействии на сперматогонии мышей вызывает 1/3 мутаций, образующихся при облучении с большей мощностью дозы. Сходным образом фракционирование дозы дает меньше мутаций, чем одномоментное облучение.

Хромосомные мутации. В результате действия ионизирующих излучений на хромосомы возникает большое количество хромосомных перестроек. Различные типы хромосомных перестроек по-разному зависят от дозы облучения. Частота хромосомных перестроек, происходящих в результате одиночного разрыва (например, деления-нехватки), находится в линейной зависимости от дозы. Частота же хромосомных перестроек, возникших в результате двух независимых одновременных разрывов и соответственно основанных на них двуударных перестроек (например, транслокаций), возрастает пропорционально квадрату дозы вследствие того, что вероятность одновременного возникновения двух независимых событий равна произведению вероятностей [2].

Прямые цитологические исследования - подсчет клеток с нарушенными хромосомами - показали, что возникновение хромосомных аберраций зависит от плотности ионизации. Излучения с меньшей энергией и большей плотностью ионизации более эффективно способствуют хромосомной перестройке. Нейтроны, обладающие, например, энергией 7,5 МэВ, вызывают больше хромосомных перестроек, чем нейтроны с энергией 15 МэВ. В опытах с рентгеновским излучением показано, что его эффективность зависит от длины волны: более эффективно рентгеновское излучение с длиной волны 4,1 А, менее эффективно с длиной волны 0,15 А. Еще менее эффективно γ-излучение. Можно сказать, что корпускулярные излучения - быстрые нейтроны и α-частицы - вызывают хромосомные перестройки чаще, чем электромагнитные излучения. Эти различия объясняются разницей в плотности ионизации, которую они производят.

Рядом исследователей было показано, что облучение дрозофилы в атмосфере чистого кислорода повышает частоту мутаций, а облучение в атмосфере азота снижает ее. Бескислородная атмосфера оказывается в некотором смысле защитной при ионизирующем облучении клетки. Повышение концентрации кислорода во время облучения от 0 до 21% линейно увеличивает число хромосомных перестроек; дальнейшее повышение концентрации кислорода оказывается менее эффективным.

Эти явления подтверждают положение о том, что хромосомные перестройки возникают в результате обратимого нарушения в ядре клетки, вызванного облучением.

Во время воздействия ионизирующего излучения на ядро клетки могут возникать истинные и потенциальные разрывы хромосом. Последние, в зависимости от условий, складывающихся в клетке после облучения, могут реализоваться в истинные разрывы

или совсем не реализоваться. Количество фиксированных мутаций в клетке определяется двумя факторами: количеством первичных поражений хромосом, возникающих в момент радиационного воздействия, и вероятностью перехода первичного изменения в конечную мутацию.

На основании различных опытов складывается представление, что способность разорванных концов хромосом к соединению в новой комбинации или воссоединению исходной структуры зависит от фазы митотического и мейотического циклов клетки, специфики объекта, характера излучения (величина, мощность дозы, ЛПЭ) и биохимических условий микросреды.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: