Расчетные сочетания усилий

Вычисление расчетных сочетаний усилий производится на основании критериев, характерных для соответствующих типов конечных элементов – стержней, плит, оболочек, массивных тел. В качестве таких критериев приняты экстремальные значения напряжений в характерных точках поперечного сечения элемента. При расчете учитываются требования нормативных документов и логические связи между загружениями.

Основой выбора невыгодных расчетных сочетаний усилий служит принцип суперпозиции. Из всех возможных сочетаний, отбираются те РСУ, которые соответствуют максимальному значению некоторой величины, избранной в качестве критерия и зависящей от всех компонентов напряженного состояния:

а) для стержней — экстремальные значения нормальных и касательных напряжений в контрольных точках сечения, которые показаны на рисунке

б) для элементов, находящихся в плоском напряженном состоянии — по огибающим экстремальным кривым нормальных и касательных напряжений по формулам:

Обозначения приведены на рисунке. Нормальные напряжения вычисляются в диапазоне изменения углов от 90° до -90°, а касательные от 90° до 0°. Шаг изменения углов 15°.

в) для плит применяется аналогичный подход — расчетные формулы приобретают вид:

Кроме того, определяются экстремальные значения перерезывающих сил.

г) для оболочек также применяется аналогичный подход, но вычисляются напряжения на верхней и нижней поверхностях оболочки с учетом мембранных напряжений и изгибающих усилий.

д) для объемных элементов критерием для определения опасных сочетаний напряжений приняты экстремальные значения среднего напряжения (гидростатического давления) и главных напряжений девиатора.

Анализ устойчивости

Задача устойчивости решается в классической постановке для упругой системы и в предположении, что все приложенные к системе внешние нагрузки (следовательно, и внутренние силы) растут пропорционально одному и тому же параметру . То значение параметра , при котором матрица жесткости системы А() впервые перестает быть положительно определенной, является критическим, а соответствующее значение  — коэффициентом запаса устойчивости. Положительная определенность матрицы жесткости означает, что при любых значениях узловых перемещений и поворотов потенциальная энергия системы положительна, и для деформирования системы необходимо затратить энергию. В этом случае система в целом оказывает сопротивление деформированию (является отпорной). Если же система теряет устойчивость, она теряет отпорность и ее матрица жесткости становится вырожденной (с нулевым детерминантом).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: