Строение атомов металлов

Таким образом, металлы в химических реакциях являются восстановителями – они приобретают положительную степень окисления. В этом заключается их принципиальное отличие от элементов-неметаллов.

 

Определение

Способность атома элемента смещать на себя электроны химической связи называют электроотрицательностью.

 

Вследствие низких значений электроотрицательности металлы легче отдают электроны, чем притягивают их, и, следовательно, проявляют восстановительные свойства.

 

Слова «металл» и «неметалл» применимы не только к химическим элементам, но и к простым веществам. Например, говоря, что простое вещество является металлом, мы подразумеваем не только что оно состоит из атомов элемента-металла, но и определенную общность физических (металлический блеск, пластичность) и химических (восстановитель) свойств. Металлические свойства простых веществ убывают при движении по периоду слева направо, а по группе - снизу вверх. В наибольшей степени металлические свойства выражены у элементов главной подгруппы I группы Периодической системы – щелочных металлов. Их атомы настолько легко отдают валентный электрон, что в природе эти элементы встречаются исключительно в виде соединений.

Металлы имеют металлическую кристаллическую решетку, в узлах которой расположены отдельные атомы. Они слабо удерживают валентные электроны, которые по этой причине свободно перемещаются по всему объему металла, формируя единое электронное облако и в равной степени притягиваются всеми атомами. Такая связь называется металлической.

 

Металлическая связь – вид химической связи между положительно заряженными ионами (катионами) в кристаллической решётке металлов, осуществляемая за счёт притяжения подвижных электронов. Металлической связью обладают металлы, сплавы и расплавы в аморфном состоянии.

 

Чем больше в металле свободных электронов и чем сильнее колебания атомов, находящихся в узлах решетки, тем быстрее происходит выравнивание температуры во всем куске металла, то есть тем больше его теплопроводность. Поэтому относительные значения тепло- и электропроводности для многих металлов близки.

 

Положение металлов в периодической системе. Особенности строения их атомов. Химические свойства металлов: их взаимодействие с НЕметаллами, водой, растворами щелочей, (в том числе щелочное сплавление для d-элементов).

 

Химические св-ва:

Металлы способны реагировать с простыми веществами, такими как кислород (реакция горения), галогены, азот, сера, водород, фосфором и углеродом:

 

2Al + 3/2 O2 = Al2O3 (оксид алюминия)

2Na + Cl2 = 2NaCl (хлорид натрия)

6Li + N2 = 2Li3N (азид лития)

2Li+2C = Li2C2 (карбид лития)

2K +S = K2S (сульфид калия)

2Na + H2 = NaH (гидрид натрия)

3Ca + 2P = Ca3P2 (фосфид кальция)

 

Металлы взаимодействуют друг с другом, образуя интерметаллические соединения:

3Cu + Au = Cu3Au

 

Щелочные и некоторые щелочноземельные металлы (Ca, Sr, Ba) взаимодействуют с водой с образованием гидроксидов:

Ba + 2H2O = Ba(OH)2 + H2↑

2Na + 2H2O = 2NaOH + H2↑

 

В ОВР металлы являются восстановителями – отдают валентные электроны и превращаются в катионы. Восстановительная способность металла — его положение в электрохимическом ряду напряжений металлов. Так, чем левее в ряду напряжений стоит металл, тем более сильные восстановительные свойства он проявляет.

 

Металлы, стоящие в ряду активности до водорода способны реагировать с кислотами:

2Al + 6HCl = 2AlCl3 + 3 H2↑

Zn + 2HCl = ZnCl2 + 2H2↑

Fe + H2SO4 = FeSO4 + H2↑

 

 

Отношение металлов к концентрированной серной и разбавленной азотной кислотам (показать схемы, написать по одному уравнению реакции для каждой кислоты с металлами разной активности).

 

Соляная кислота

Образующиеся в этом процессе ионы водорода H+ выполняют роль окислителя, окисляя металлы, расположенные в ряду активности левее водорода. Взаимодействие протекает по схеме:

Me + HCl соль + H2↑

При этом соль представляет собой хлорид металла (NiCl2, CaCl2, AlCl3), в котором число хлорид-ионов соответствует степени окисления металла.

Соляная кислота является слабым окислителем, поэтому металлы с переменной валентностью окисляются ей до низших положительных степеней окисления:

 

Fe(0) → Fe(2+)

Co(0) → Co(2+)

Ni(0) → Ni(2+)

Cr(0) → Cr(2+)

Mn(0) → Mn(2+)

 

Пример:

2 Al + 6 HCl → 2 AlCl3 + 3 H2↑

 

Соляная кислота пассивирует свинец (Pb). Пассивация свинца обусловлена образованием на его поверхности трудно растворимого в воде хлорида свинца (II), который защищает металл от дальнейшего воздействия кислоты:

 

Pb + 2 HCl → PbCl2↓ + H2↑

 

Разбавленная серная кислота

В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют:

 

H2SO4 H(+) + HSO4-

HSO4- H(+) + SO42-

 

Образующиеся ионы Н(+) выполняют функцию окислителя.

Как и соляная кислота, разбавленный раствор серной кислоты взаимодействует только с металлами активными и средней активности (расположенными в ряду активности до водорода).

 

 

Химическая реакция протекает по схеме:

Ме + H2SO4(разб.) → соль + H2↑

 

Пример:

2 Al + 3 H2SO4(разб.) → Al2(SO4)3 + 3 H2↑

 

Металлы с переменной валентностью окисляются разбавленным раствором серной кислоты до низших положительных степеней окисления:

 

Fe(0) → Fe(2+)

Co(0) → Co(2+)

Ni(0) → Ni(2+)

Cr(0) → Cr(2+)

Mn(0) → Mn(2+)

 

Свинец (Pb) не растворяется в серной кислоте (если ее концентрация ниже 80%), так как образующаяся соль PbSO4 нерастворима и создает на поверхности металла защитную пленку.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: