Энтропия и информация

Количественной характеристикой теплового состояния системы является термодинамическая вероятность W, равная числу микроскопических способов, с помощью которых это состояние может быть достигнуто. Система, предоставленная самой себе, стремится перейти в состояние с большим значением W. Принято пользоваться не самой вероятностью W, а ее логарифмом, который еще умножается на постоянную Больцмана k: S= k ln W. Определенную таким образом величину S называют энтропией системы. Возрастание энтропии для необратимых процессов есть следствие перехода системы от менее вероятного состояния к более вероятному, при этом состояние равновесия выступает как наиболее вероятное.              

Второе начало термодинамики: (закон возрастания энтропии) – для всех происходящих в замкнутой системе тепловых процессов энтропия системы возрастает; максимально возможное значение энтропии замкнутой системы достигается в тепловом равновесии: ΔS >=0.Идеальному случаю - полностью обратимому процессу замкнутой системы - соответствует неизменяющаяся энтропия. Все естественные процессы происходят так, что вероятность состояния возрастает, что означает переход от порядка к хаосу. Значит, энтропия характеризует меру хаоса, которая для всех естественных процессов возрастает. Третье начало термодинамики: (тепловая теорема, сформулированная Нернстом) – при абсолютном нуле температуры энтропия принимает значение, не зависящее от давления, агрегатного состояния и других характеристик в-ва. Такое значение можно положить равным нулю.  

Основные положения молекулярно-кинетической теории.

К концу XIX в. была создана последовательная теория, описывающая св-ва большой совокупности атомов и молекул – молекулярно-кинетическая теория, или статистическая механика. Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул, которое анализируется статистическим методом, основанным на том, что св-ва макросистемы в конечном результате определяются особенностями движения частиц и их усредненными кинетическими и динамическими характеристиками. Термодинамические и статистические методы описания св-в макросистем дополняют друг друга и широко используются при решении различных естественно-научных задач.

Основные положения молекулярно-кинетических представлений:

любое тело – твердое, жидкое или газообразное – состоит из большого числа весьма малых частиц – молекул

молекулы всякого в-ва находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления в движении

интенсивность движения молекул, определяемая их скоростью, зависит от температуры в-ва

Тепловые св-ва в-ва связаны с его внутренним строением. Исследование тепловых явлений можно использовать для выяснения общей картины строения в-ва.

Из основного ур-ния м.-к. теории вытекает важный вывод: средняя кинетическая энергия поступательного движения одной молекулы идеального газа прямо пропорциональна его термодинамической температуре и зависит только от нее: E = 3/2* kT (k – постоянная Больцмана, T – температура). Из данной формулы следует, что при T=0 средняя кинетическая энергия равна нулю, т.е. при абсолютном нули прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Термодинамическая температура – мера кинетической энергии поступательного движения молекул идеального газа, а приведенная формула раскрывает молекулярно-кинетическое толкование температуры.   

Идеальный газ.

В молекулярно-кинетической теории пользуются идеализированной моделью идеального газа, согласно которой:

собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

между молекулами газа отсутствуют силы взаимодействия;

столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов, так как в условиях, близких к нормальным (напри­мер, кислород и гелий), а также при низких давлениях и высоких температурах они близки по своим свойствам к идеальному газу. Кроме того, внеся поправки, учитывающие собственный объем мо­лекул газа и действующие молекулярные силы, можно перейти к теории реальных газов, из которой следует уравнение Ван-дер-Ваальса, описывающее состояние реального газа. Идеальные газы подчиняются уравнению состояния Менделеева - Клапейрона: pV=(m/m)RТ, где p — давление газа; V — его объем; m — масса газа; m молярная масса; R — универсальная газовая постоянная.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: