NAND и NOR-архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных

Тестирование USB Flash памяти и запись характеристик.

Тема программы: Внешняя память персонального компьютера

Цель работы: Изучить устройство и характеристики Flash памяти, её особенности и продиагностировать скорость передачи данных USB Flash памяти. Научиться разбираться в основных характеристиках USB Flash памяти и карт памяти.

Время выполнения: 6 часов.

Теоретические основы

Флеш-память     англ. Flash-Memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально — около миллиона циклов). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи — намного больше, чем способна выдержать дискета или CD-RW. Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна. Благодаря своей компактности, дешевизне и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах — фото- и видеокамерах, диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, мини-АТС, принтерах, сканерах, модемax), различных контроллерах. Также в последнее время широкое распространение получили USB флеш-накопители («флешка», USB-драйв, USB-диск), практически вытеснившие дискеты и CD. Одним из первых флешки JetFlash в 2002 году начал выпускать тайваньский концерн Transcend

.  

На конец 2008 года основным недостатком, не позволяющим устройствам на базе флеш-памяти вытеснить с рынка жёсткие диски, является высокое соотношение цена/объём, превышающее этот параметр у жестких дисков в 2—3 раза. В связи с этим и объёмы флеш-накопителей не так велики. Хотя работы в этих направлениях ведутся. Удешевляется технологический процесс, усиливается конкуренция. Многие фирмы уже заявили о выпуске SSD-накопителей объёмом 256 Гб и более. Например в ноябре 2009 года компания OCZ предложила SSD-накопитель ёмкостью 1 Тб и 1,5 млн циклов перезаписи. Ещё один недостаток устройств на базе флеш-памяти по сравнению с жёсткими дисками — как ни странно, меньшая скорость. Несмотря на то, что производители SSD-накопителей заверяют, что скорость этих устройств выше скорости винчестеров, в реальности она оказывается ощутимо ниже. Конечно, SSD-накопитель не тратит подобно винчестеру время на разгон, позиционирование головок и т. п. Но время чтения, а тем более записи, ячеек флеш-памяти, используемой в современных SSD-накопителях, больше. Что и приводит к значительному снижению общей производительности. Справедливости ради следует отметить, что последние модели SSD-накопителей и по этому параметру уже вплотную приблизились к винчестерам. Однако, эти модели пока слишком дороги.

Принцип действия

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

NOR

В основе этого типа флеш-памяти лежит ИЛИ-НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR-архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND-архитектуры.

NAND

В основе NAND-типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR-типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND-чипа может быть существенно меньше. Также запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR-архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

История

Флеш-память была изобретена инженером компании Toshiba Фудзио Масуокой в 1984 году. Название «флеш» было придумано также в Toshiba коллегой Фудзио, Сёдзи Ариидзуми, потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR-типа.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: