Нейрон, строение, классификация

Размеры нейронов колеблются в диаметре от 4-5мкм до 140-150мкм. У каждого нейрона имеется тело (сома), где содержатся ядро и цитоплазматические органеллы, ответственные за синтез белков, медиаторов и других важных компонентов клетки. От тела нейрона отходят два типа отростков: дендриты и аксон. Количество дендритов у различных нейронов может существенно отличаться, причем, каждый дендрит еще может дополнительно ветвиться. Таким образом, количество их может быть от 5-1500. Примерно 80-90 % поверхности нейронов приходится на долю дендритов. Через дендриты нейрон имеет входы для возбуждения. От тела нейрона отходит один отросток – аксон. Толщина и длина аксонов у различных нейронов различна. Длина аксона может быть от 0,1 мм до 3 м у некоторых животных. Аксон по ходу может давать ответвления или коллатерали, которые увеличивают возможность передачи информации в центральной нервной системе. Так, один нейрон в головном мозге может за счет коллатералей аксона передать сигналы 5000 нейронов. Кроме того, коллатерали также дополнительно распадаются на тонкие веточки. Все веточки аксонов заканчиваются синапсами на других клетках. Каждый нейрон покрыт мембраной, которая имеет в покое мембранный потенциал, а при возбуждении формирует потенциал действия или нервный импульс. Существует огромное многообразие нейронов. Классификация нейронов осуществляется по трем признакам: морфологическим, функциональным и биохимическим. По морфологическим признакам выделяют: униполярные, биполярные и мультиполярные нейроны. Униполярные — нейроны с одним отростком (в центральной нервной системе человека не встречаются); Некоторые авторы находят их в сетчатке глаза. Биполярныенейроны – нейроны с двумя отростками, это сенсорные нейроны они имеют один дендрит и один аксон. Мультиполярные нейроны, имеющие несколько дендритов и один аксон, наиболее распространены в центральной нервной системе. По функции нейроны разделяют на три типа: 1) афферентныеиличувствительные, или центростремительные. Тела большинства таких нейронов находятся вне центральной нервной системы в спинномозговых ганглиях, их дендриты начинаются рецепторами, а аксон через задние корешки спинного мозга направляется в центральную нервную систему; 2) эфферентные нейроны или двигательные, или центробежные предназначены для передачи информации от центральной нервной системы к рабочим органам; 3) вставочные или интернейроны осуществляют передачу возбуждения с афферентного на другие вставочные или на эфферентные нейроны. На их долю приходится 97-99 % от общего объема нейронов в центральной нервной системе. Вставочные нейроны по своей функции могут быть возбуждающими и тормозными.

Нейроглия, виды клеток и их функция.

Нейроглия – это обширная группа клеток мозга, выполняющих опорную, трофическую, барьерную и защитную функции. Без нейроглии нейроны не могут существовать. Клетки глии мельче нейронов, но число их в 5-10 раз превышает число нейронов, а их совокупный объем равен примерно половине мозга. Глиальные клетки способны делится. Если с возрастом число нейронов уменьшается, то число глиальных клеток может нарастать, что лежит в основе развития опухолей мозга. Основными представителями глиальных клеток являются астроциты, олигодендроциты и микроглия. Астроциты или звездчатые клетки, наиболее крупные, выполняют опорную, разграничительную, транспортную, метаболическую и защитную функции. Они создают оптимальное микроокружение нейронов, формируют гематоэнцефалический барьер, изолируют тела нейронов и их отростки. Астроциты регулируют содержание ионов калия вокруг нейронов, захватывают медиаторы из синаптической щели, кроме того они обладают фагоцитарной активностью. При повреждении нервной системы астроциты формируют глиальный рубец. Олигодендроцитыотделяют нейроны друг от друга и выполняют две функции: обеспечивают образование миелина и способствуют питанию нейронов.

Классификация нервных волокон, особенности проведения возбуждения по миелиновым и безмиелиновым волокнам.

 

. Основной функцией нервных волокон является проведение возбуждения или нервных импульсов. За возникновение и проведение нервных импульсов ответственна плазматическая мембрана нервных волокон. В безмиелиновых нервных волокнах возбуждение распространяется непрерывно вдоль всей мембраны от возбужденного участка к невозбужденному за счет формирования местных или локальных токов.

В миелиновых волокнах возбуждение распространяется только по участкам, не покрытым миелином, по перехватам Ранвье, «перепрыгивая» через участки, покрытые изолирующей миелиновой оболочкой. Такое проведение называется сальтаторным. В состоянии покоя мембрана всех перехватов заряжена на поверхности положительно, разности потенциалов между перехватами не существует. В момент возбуждения мембрана возбужденного перехвата становится заряжена на поверхности электроотрицательно по отношению к поверхности невозбужденного соседнего участка, а внутри клетки — электроположительно по отношению к невозбужденному соседнему участку мембраны. Между возбужденным и невозбужденным участками нервного волокна формируется электрический ток, в результате чего возбуждение передается от одного перехвата Ранвье к другому вдоль нервного волокна. Плотность натриевых каналов в зоне перехватов очень велика, это и делает мембрану высоко возбудимой. Разность потенциалов возникающая в перехватах Ранвье, в 5-6 раз превышает пороговую величину, необходимую для возбуждения мембраны соседнего перехвата. Поэтому величина ПД по мере проведения по нервному волокну сохраняется постоянной, т. е. не убывает. Длина межперехватных участков пропорциональна диаметру волокна, поэтому, чем больше диаметр волокна, тем выше скорость проведения возбуждения. В наиболее толстых миелиновых волокнах она достигает 120м/с.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: