Строение аппарата Гольджи

Вопрос 1


Клетка- это наименьшая структурная и функциональная единица живого.

Клетка активно реагирует на раздражение, выполняет функции роста и размножения, способна к самовоспроизведению и передаче генетической информации потомкам, к регенерации и приспособлению к окружающей среде.

В организме человека различают около 200 типов клеток, которые отличаются друг от друга формой, строением, химическим составом, характером обмена веществ. И каждая клетка представляет собой целостную живую систему. Она состоит из 3х неразрывно связанных между собой частей: цитоплазмы, ядра и цитолеммы(плазматической мембраны)

Цитоплазма состоит из полупрозрачной гиалоплазмы (от лат. Hyalinos-прозрачный) - основного вещества цитоплазмы и находящихся в ней органелл и включений.

Гиалоплазма - сложная система, которая заполняет пространство между клеточными органеллами.

Состав-вода (90%), белки, аминокислоты, нуклеиновые кислоты, полисахариды, нуклеотиды, соли. Гиалоплазма объединяет различные структуры клетки и обеспечивает их взаимодействие.

Органеллы - структуры клетки, выполняющие определённые, жизненноважные функции. Различают органеллы общего назначения(во всех клетках) и специальные(в специализированных), мембранные и немембранные.

Мембранные органеллы:
эндоплазматическую сеть, Комплекс Гольджи, митохондрии, лизосомы, пероксисомы.



Эндоплазматическая сеть, строение, виды ЭПС.

Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.

Эндоплазматический ретикулум (ЭПР) (лат. reticulum — сеточка) или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвленную систему соединённых между собой каналов и полостей, ограниченных одинарной мембраной. Мембрана ЭПС тоньше чем плазмалемма и содержит более высокую концентрации. белка.

На поверхности мембран ЭПС происходит большая часть реакций метаболизма, протекающих в клетке. ЭПС разделяет цитоплазму на отдельные отсеки. по каналам ЭПС происходит упорядоченный обмен веществами и энергией между различными компонентами клетки.

ЭПС – генератор мембран для плазмолеммы, аппарата гольджи и лизосом.

Гранулярная или шероховатая ЭПС.

Наружная обращенная к цитоплазме, сторона гранулярной ЭПС покрыта рибосомами (которая имеют вид мелких гранул; поступают из ядра благодаря связи мембраны с наружной мембраны ядра).

Гранулярная ЭПС – образована уплощенными мембранными цистернами и трубочками на наружной поверхности которых располагаются рибосомы и полисомы, придающие мембране зернистый вид.

Мембраны содержат белки (которые обеспечивают связывание рибосом, уплощение цистерн).

Полость гранулярной ЭПС сообщается с перенуклеарным пространством. Благодаря гранулярной ЭПС происходит отделение вновь синтезированных белковых молекул от гиалоплазмы.

Гранулярная ЭПС хорошо развита в клетках, специализирующихся на белковом синтезе.

ФУНКЦИИ:

 1)биосинтез всех мембранных белков, предназначенных для экспорта из клетки.

2) В гранулярной ЭПС происходит посттрансляционный процессинг белков. (созревание белка). Белки приобретают характер для них третичную или четвертичную структуру. потом транспортируются в комплекс гольджи - > потом в другие органоиды.

3) Обеспечивает транспорт синтезируемых веществ в аппарат гольджи.

Гладкая или агранулярная ЭПС.

Не имеет рибосом. Состоит из сильно ветвящихся канальцев и мелких вакуолей диаметром 20-100 нм. гладкая ЭПС - трёхмерная замкнутая сеть мембранных анастамозирующих трубочек, канальцев, цистерн и пузырьков диаметром 20-100 нм, на поверхности которых рибосомы отсутствует.

На цитоплазмотической поверхности гладкой ЭПС синтезируется большая часть липидов клетки, которые вход в состав всех её мембран. Часть синтезируемая на гладкой ЭПС белков и липидов встраивается в неё, но увеличения общей площади мембраны при этом не происходит. На гладкой ЭПС совершается синтез и распад многих углеводов, включая полисахариды, образующие стероидные гормоны.

Гладкая ЭПС наиболее развита в клетках с интенсивным жировыми углеводным обменом.

ФУНКЦИИ:

1. синтез липидов; (на мембранах)

2. синтез гликогена (в клетках печени)

3. синтез холестерина и других стероидов

4. компартментализация (эпс разделет клетку на отдельные отсеки)

5. транспорт синтезируемых веществ

Комплекс Гольджи

Комплекс, или аппарат, Гольджи назван так в честь открывшего его ученого. Это клеточная органелла имеет вид комплекса полостей, ограниченных одинарными мембранами. В растительных клетках и у простейших представлен несколькими отдельными более мелкими стопками (диктиосомами).

Строение аппарата Гольджи

Комплекс Гольджи по внешнему виду, видимому в электронный микроскоп, напоминает стопку наложенных друг на друга дискообразных мешочков, около которых находится множество пузырьков. Внутри каждого «мешка» находится узкий канал, расширяющийся на концах в так называемые цистерны (иногда цистерной называют весь мешочек). От них отпочковываются пузырьки. Вокруг центральной стопки формируется система взаимосвязанных трубочек. С наружней, имеющей несколько выпуклую форму, стороны стопки образуются новые цистерны путем слияния пузырьков отпочковывающихся от гладкой эндоплазматической сети. На внутренней стороне цистерны завершают свое созревание и распадаются снова на пузырьки. Таким образом, цистерны (мешочки стопки) Гольджи перемещаются от наружней стороны к внутренней.

Часть комплекса, располагающаяся ближе к ядру, называется «цис». Та, что ближе к мембране, – «транс».

Функция -накопление продуктов, синтезированных ЭПС, и выведение образовавшихся веществ за пределы клетки, также формирование лизосом и пероксисом.

Активность комплекса Гольджи высока в секреторных клетках. Белки, поступающие из ЭПС, концентрируются в аппарате Гольджи, затем переносятся к мембране в пузырьках Гольджи. Ферменты секретируются из клетки путем обратного пиноцитоза.

Лизосомы

Лизосома — это одномембранный органоид эукариотической клетки, имеющий в основном шаровидную форму и не превышающий по размеру 1 мкм. Характерны для клеток животных, где могут содержаться в больших количествах (особенно в клетках, способных к фагоцитозу). В растительных клетках многие функции лизосом выполняет центральная вакуоль.

Строение лизосомы

Элементарная мембрана лизосомы отграничивает от цитоплазмы несколько десятков гидролитических (пищеварительных) ферментов, расщепляющих белки, жиры, углеводы и нуклеиновые кислоты. Ферменты относятся к группам протеаз, липаз, нуклеаз, фосфатаз и др.

В отличие от гиалоплазмы, внутренняя среда лизосом имеет кислую реакцию, а содержащиеся здесь ферменты активны только при низком pH.

Изоляция ферментов лизосом необходима, иначе, оказавшись в цитоплазме, они могут разрушить клеточные структуры.

Было обнаружено, что среди различных по морфологии лизосомных частиц можно выделить по крайней мере четыре типа: первичные лизосомы, вторичные лизосомы, аутофагосомы и остаточные тельца.

1. Первичные лизосомы (гидролазные пузырьки) – округлые пузырьки небольшого размера, с мелкозернистым, гомогенным, плотным матриксом. Надежная идентификация первичных лизосом возможна только при гистохимическом выявлении характерных ферментов (кислая фосфатаза). Первичные лизосомы – неактивные структуры, еще не вступившие в процессы расщепления субстратов.

2. Вторичные лизосомы – органеллы, активно участвующие в процессах внутриклеточного переваривания. Диаметр вторичных лизосом обычно составляет 0.5-2 мкм, их форма и структура могут существенно варьировать в зависимости от перевариваемого субстрата, но обычно содержимое вторичных лизосом гетерогенно. Вторичная лизосома – результат слияния первичной лизосомы с фагосомой или аутофагосомой.

3. Фаголизосома формируется путем слияния первичной лизосомы с фагосомой - мембранным пузырьком, содержащим материал, захваченный клеткой извне. Процесс разрушения этого материала называется гетерофагией.

4. Аутофаголизосома образуется при слиянии первичной лизосомы с аутофагосомой - мембранным пузырьком, содержащим собственные компоненты клетки, которые подлежат разрушению. Источником мембраны, окружающей клеточные компоненты, служит ЭПС. Процесс переваривания внутриклеточного материала называется аутофагией.

Образование лизосом

Лизосомы образуются в комплексе Гольджи. Ферменты (по-сути белки) лизосом синтезируются на шероховатой эндоплазматической сети, после чего транспортируются в Гольджи с помощью везикул (пузырьков, ограниченных мембраной). Здесь белки модифицируются, приобретают свою функциональную структуру, упаковываются в другие пузырьки – первичные лизосомы, – которые отрываются от аппарата Гольджи. Далее, превращаясь во вторичные лизосомы, выполняют функцию внутриклеточного переваривания. В некоторых клетках первичные лизосомы секретируют свои ферменты за пределы цитоплазматической мембраны.

Пероксисомы - небольшие овальной формы тельца, содержащие ферменты, разрушающие пероксид водорода (Н2О2), который токсичен для клетки.

Эндоплазматическая сеть, Комплекс Гольджи, лизосомы, пероксисомы-представляют собой единую, ограниченную мембранами вакуолярную систему клетки, участвующую в синтезе и транспорте различных, важных для жизнедеятельности клетки веществ.

Митохондрии (от греч. mitos-нить; chondrion - зерно, гранула), называют «энергетическими станциями клетки». Это палочковидные, нитевидные или шаровидные органеллы, диаметром около 0,5 мкм, длинной от 1до 10 мкм. Они хорошо видны в световой микроскоп. Они ограничены не одной мембраной, а двумя. Наружная мембрана ровная и ограничивает митохондрию от гиалоплазмы. А внутренняя ограничивает содержимое митохондрии и образует многочисленные складки, выпячивания - гребни (кристы)

Функция - синтез АТФ(аденозинтрифосфорной кислоты)-важного для функций клеток энергетического материала.

К немембранным органеллам относят опорный аппарат, клеточный центр, микрофиламенты, микротрубочки, рибосомы.

Опорный аппарат (цитоскелет) обеспечивает клетке способность сохранять форму, а также осуществлять направленные движения. Цитоскелет представлен белковыми нитями.

Микрофиламенты

Микрофиламенты - субмикроскопические немембранные органеллы общего назначения, выполняющие роль цитоскелета.

В зависимости от строения и функции микрофиламенты делятся на:

1) Собственно микрофиламенты;

2) Промежуточные микрофиламенты.

Собственно микрофиламенты - характерны практически для всех клеток и локализованы в кортикальном слое цитоплазмы непосредственно под плазмолеммой.

Строение - это тонкие волокна, диаметром от 5 до 7 нм, состоящие из белков: актина, миозина, тропомиозина, a-актинина.

Функции - собственно микрофиламенты, являются внутриклеточным сократительным аппаратом, который обеспечивает не только подвижность клетки, а и большинство внутриклеточных движений, потоки цитоплазмы, движение вакуолей, митохондрий, деление клеток.

Промежуточные микрофиламенты

или микрофибриллы (microfibrillae) - это образование белковой структуры.

Строение - представляют собой тонкие нити, часто располагающиеся пучками диаметром 10-15 нм. Характерным является то, что структурный состав их различный в разных тканях. Микрофиламенты эпителия состоят из белка - кератина, в клетках мезенхимных тканей из белка - десмина.

Функция - отвечают за сохранение клеткой своей формы.

Микротрубочки

Микротрубочки (microtubuli) - субмикроскопические мембранные органеллы, основным назначением которых является создание эластического и одновременно устойчивого цитоскелета, необходимого для поддержания формы клетки.

Строение. Микротрубочки построены из глобулярных белков - тубулинов, молекулы которых способны полимеризоваться особым путем, нанизываясь одна на другую, и образуя округлые субъединицы величиной 5 нм. Стенка микротрубочек состоит из плотно уложенных субъединиц, 13 субъединиц образуют кольцо микротрубочки. Внешний диаметр составляет около 24 нм, внутренний просвет имеет ширину 15 нм. Микротрубочки входят в состав сложноорганизованных специальных органелл, таких как центриоли и базальные тельца, а также являются основными структурными элементами ресничек и жгутиков.

Функция. В клетках микротрубочки принимают участие в создании ряда временных (цитоскелет интерфазных клеток, веретено деления) и постоянных структур (центриоли, реснички, жгутики).

Клеточный центр (цитоцентр) состоит из центриолей и окружающего их плотного вещества — центросферы. Располагается клеточный центр возле Ядра клетки. Центриоли это полые цилиндры, стенки которых состоят из 9 триплетов — тройных микротрубочек. Обычно в неделящейся клетке присутствуют две центриоли: материнская и дочерняя, которые располагаются под углом друг к другу. При подготовке клетки к делению происходит удвоение центриолей. так что в клетке перед делением образуются четыре центриоли. Центриоли и центросфера участвуют в формировании в делящихся клетках веретена деления и располагаются на его полюсах.

Рибосомы — элементарные аппараты синтеза белковых, полипептидных молекул — обнаруживаются во всех клетках. Рибосомы — это сложные рибонуклеопротеиды, в состав которых входят белки и молекулы рибосомальных РНК (рРНК) примерно в равных весовых отношениях. Такая рибосома состоит из большой и малой субъединиц. Каждая из субъединиц построена из рибонуклеопротеидного тяжа, где рРНК взаимодействует с разными белками и образует тело рибосомы.

Классификация

Различают единичные рибосомы и комплексы рибосом (полисомы).

Рибосомы могут располагаться свободно в гиалоплазме или быть связанными с мембранами эндоплазматической сети. В малоспециализированных и быстрорастущих клетках в основном обнаруживаются свободные рибосомы.

В специализированных клетках рибосомы располагаются в составе гранулярной эндоплазматической сети. Синтетическая деятельность свободных рибосом направлена в основном на собственные нужды клетки. Связанные рибосомы обеспечивают синтез белков «на экспорт», т.е. на обеспечение нужд организма. Содержание РНК и соответственно степень белковых синтезов коррелируют с интенсивностью базофилии цитоплазмы, т.е. со способностью окрашиваться основными красителями.

 

Вопрос2

ЦИТОЛЕММА.

Основной структурой любой био­логической мембраны является не­прерывный двойной слой липидных молекул — билипидный слой. Он обеспечивает непроницаемость мембраны для большинства водо­растворимых молекул. Липиды составляют около 50% массы плазма­тической мембраны. Их молекулы имеют гидрофильную (любящую воду) головку и гидрофобные (боя­щиеся воды) концы. Липидные молекулы расположены таким образом, что гидрофобные концы находятся между двумя слоя­ми, образованными гидрофильными головками.

Молекулы белков не образуют в мембранах сплошного слоя, они располагаются в слоях липидов. по­гружаясь в них на разную глубину. В плазматической мембране количе­ство белков составляет половину ее массы.

Углеводы на поверхности мемб­раны представлены полихаридными цепочками, которые прикреплены к мембранным белкам и липидам. Масса углеводов в плазматической мембране колеблется от 2 до 10% от ее массы.
Углеводы на клеточной поверхности образуют надмембранный слой — гликокаликс, принимающий участие в про­цессах межклеточного узнавания.

Функция плазматической мембра­ны.
Одна из основных жизненно важных функций плазматической мембраны — транспортная функция.

 Она обеспечивает:

· поступление в клетку питательных и энергетических веществ,

· выведение продуктов обме­на и биологически активных ве­ществ (секретов),

· регулирует про­хождение в клетку и из клетки раз­личных ионов.

Вопрос3




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: