Закон сохранения заряда. Закон Кулона

ЭЛЕКТРОСТАТИКА

Основной закон сохранения заряда гласит : заряды не создаются и не пропадают, они могут быть переданы от одного тела другому или перемещены внутри одного тела. Это положение носит название закона сохранения электрического заряда и является основным в учении об электричестве. Оно никак не доказывается, а лишь подтверждается многочисленными фактами и экспериментами. Иногда его формулируют по-иному: в изолированной (замкнутой) системе алгебраическая сумма зарядов остается постоянной.

Поскольку всякий заряд q образуется совокупностью элементарных зарядов, он является целым кратным е:                  q = n ´ e,                                                                                      (1.1),
где n – количество лишних элементарных зарядов. Равенство (1.1) показывает, что электрический заряд – величина дискретная, однако элементарный заряд настолько мал, что возможную величину макроскопических зарядов можно считать изменяющейся непрерывно.

Основной закон взаимодействия зарядов - закон Кулона:
сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними.

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

(1.2)

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и — радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического — «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Коэффициент пропорциональности в законе Кулона записывается в виде:

 

(1.4)

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной. Приближенное численное значение электрической постоянной следующее:  

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

 

 

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга. Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел — первого и второго — действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотностьзаряда :         

где dV — физически бесконечно малый элемент объема;

· поверхностная плотность заряда:

где dS — физически бесконечно малый элемент поверхности;

· линейная плотность заряда:

где — физически бесконечно малый элемент длины линии.

Здесь всюду — заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение) этого участка можно пренебречь.

Если известна сила взаимодействия точечных тел (например, закон Кулона) и необходимо найти силу взаимодействия протяженных тел (например, вычислить силу взаимодействия двух заряженных тел конечных размеров), то необходимо разбить эти тела на физически бесконечно малые участки, написать для каждой пары таких «точечных» участков известное для них соотношение и, воспользовавшись принципом суперпозиции, просуммировать (проинтегрировать) по всем парам этих участком.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: