Примеры расчета приведенного сопротивления теплопередаче с использованием ЭВМ

Пример 5. Требуется определить приведенное сопротивление теплопередаче неоднородной стеновой панели.

А. Исходные данные

1. Конструкция панели изображена на рис. 2. Она состоит из двух стальных профилированных листов с коэффициентом теплопроводности 58 Вт/(м·°С), между которыми размещены минераловатные полужесткие плиты плотностью 200 кг/м3 с коэффициентом теплопроводности 0,08 Вт/(м·°С). Листы соединяются между собой стальными профилями через бакелизированные фанерные прокладки толщиной 8 мм, с коэффициентом теплопроводности 0,18 Вт/(м·°С).

2. В расчете приняты следующие условия на сторонах ограждения:

снаружи - t н =- 30°С и aн=23 Вт/(м2·°С);

внутри - t в=18°С и aв=8,7 Вт/(м2·°С).

Б. Порядок расчета

На процесс теплопередачи в рассматриваемой конструкции оказывают существенное влияние стальные профили, соединяющие профилированные листы обшивки друг с другом и образующие так называемые мостики холода. Для разрыва этих мостиков холода профили присоединены к листам через фанерные прокладки. Участок конструкции с ребром посередине возможно выделить для расчета температурного поля.

Температурное поле рассматриваемого участка двухмерно, так как распределение температуры во всех плоскостях, параллельных плоскости поперечного сечения конструкции, одинаково. Профили в основной части находятся на расстоянии 2 м один от другого, поэтому при расчете можно учесть ось симметрии посредине этого расстояния.

Рис. 2. Конструкция панели типа "сэндвич" и чертеж исследуемой области

1 - минераловатные плиты; 2 - профилированные стальные листы; 3 - стальные профили; 4 - фанерные прокладки

Исследуемая область (см. рис. 2) имеет форму прямоугольника, стороны которого являются естественными границами ограждающей конструкции, на которых задаются условия теплообмена с окружающей средой, а остальные две - осями симметрии, на которых возможно задавать условия полной теплоизоляции, т.е. тепловой поток в направлении оси ох, равный нулю.

Исследуемая область для расчета согласно прил. 14 была расчленена на 1215 элементарных блоков с неравномерными интервалами.

В результате расчета двухмерного температурного поля на ЭВМ получен осредненный тепловой поток, проходящий через рассчитанный участок ограждающей конструкции, равный Q =52,25 Вт, Площадь рассчитанного участка составляет f =2 м2.

Приведенное сопротивление теплопередаче рассчитанного фрагмента по формуле (4)

R опр=(18+30)(2/52,25)=1,837 м2·°С/Вт.

Для сравнения сопротивления теплопередаче вне теплопроводного включения по формуле [4]

 м2·°С/Вт

Температура внутренней поверхности в зоне теплопроводного включения по расчету на ЭВМ равна 8,55°С. Проверим на условие выпадения конденсата. При t в=18°С и j=55% по прил. 1 температура точки росы t р=8,83°С, что выше температуры поверхности по теплопроводному включению, следовательно при расчетной температуре наружного воздуха -30°С будет выпадение конденсата и конструкция нуждается в доработке.

Расчетная температура наружного воздуха, при которой не будет выпадения конденсата, определяется по формуле (2) прил. 14.

°С

Пример 6. Определить приведенное сопротивление теплопередаче участке трехслойной ограждающей конструкции - стеновой панели с гибкими связями из металла.

А. Исходные данные

1. Конструкция панели представлена на рис. 3. Пунктиром обозначен участок конструкции, более детально приведенный на рис. 3. Между слоями бетона (1) толщиной 60 и 80 мм помещен слой утеплителя (2) из пенополистирола толщиной 120 мм. Стальные арматурные сетки (3) выполнены из стержней диаметром 6 мм с размерами ячеек 300 на 600 мм. Железобетонные слои соединены с помощью металлических стержней (4) - гибких связей, расположенных против узлов арматурных сеток. Железобетонные слои имеют коэффициент теплопроводности 1,74 Вт/(м·°С); утеплитель - 0,04 Вт/(м·°С) и стальные стержни - 58 Вт/(м·°С).

Рис. 3. Конструкция панели и схема расчета трехмерной задачи на ЭВМ

а - схема панели; б - участок ABCD, выделенный дли расчета; в - то же, A 1 B 1 С 1 D 1 для расчета на ЭВМ

2. В расчете приняты следующие условия на поверхностях ограждения по данным эксперимента:

снаружи - t н =- 20°С и aн=14,3 Вт/(м2·°С);

внутри - t в=20°С и aв=7,7 Вт/(м2·°С).

Б. Порядок расчета

Процесс теплопередачи в рассматриваемой конструкции существенно трехмерен, так как потоки тепла интенсивно распространяются по металлическим стержням, образующим каркас. Поэтому необходим расчет трехмерного температурного поля.

Выделим для расчета только часть конструкции (см. рис. 3) исходя из следующих соображений. Температурное поле симметрично относительно двух плоскостей сечений, проходящих через оси стержней гибких связей и стержней арматурной сетки. Оно также симметрично относительно двух плоскостей сечений, проходящих через середины сетки и перпендикулярных стержням. Поэтому по условию симметрии на этих плоскостях перпендикулярные плоскостям сечений тепловые потоки можно принять равными нулю.

Исследуемая область была расчленена на 4200 элементарных прямоугольных параллелепипедов параллельными плоскостями, перпендикулярными координатным плоскостям и отстоящими одна от другой на неравномерные интервалы. В результате расчета на ЭВМ получены поле температур и поле тепловых потоков. При площади поверхности рассматриваемого участка F =0,045 м2 осредненный тепловой поток составил Q =0,589 Вт и приведенное сопротивление теплопередаче, вычисленное по формуле (4), равно:

 м2·°С/Вт.

Для сравнения укажем, что приведенное сопротивление теплопередаче такого же участка панели без гибких связей составляет R оусл=3,21 м2·°С/Вт, т.е. коэффициент теплотехнической однородности рассчитываемой панели равен r =0,95. Незначительное влияние оказывают гибкие связи рассматриваемого типа и на температуру внутренней поверхности. Так, рассчитанные температуры внутренней поверхности против стержня гибкой связи tв=18,15°С, а в точке, равноудаленной от связей tв=18,34°С, а такой же поверхности, но в конструкции без гибких связей, tв=18,38°С, т.е. наличие гибкой связи вызывает снижение температуры внутренней поверхности на 0,23°С.

Пример 7. Определить приведенное сопротивление теплопередаче экструзионной панели совмещенной крыши.

А. Исходные данные

1. Конструкция панели совмещенной крыши (рис. 4) размером 3180´3480´270 мм представляет в сечении трехслойную оболочку, Наружный и внутренний слои толщиной 50 и 60 мм из железобетона с коэффициентом теплопроводности 2,04 Вт/(м·°С). Средний теплоизоляционный слой из пенополистирольных плит с коэффициентом теплопроводности 0,05 Вт/(м·°С). Каждая из оболочек имеет параллельные один другому на расстоянии 700 мм ребра по 60 и 40 мм, доходящие до середины теплоизоляционных слоев. Направления ребер оболочек взаимно перпендикулярны и таким образом каждое ребро одной оболочки примыкает к ребру другой оболочки на площадках 60´40 мм.

2. В расчете приняты следующие условия на поверхностях ограждения

снаружи - t п = -40°С и aн=23 Вт/(м2·°С);

внутри - t в=18°С и aв=8,7 Вт/(м2·°С).

Рис. 4. Схема конструкции панели совмещенной крыши

Б. Порядок расчета

Процесс теплопередачи в такой ограждающей конструкции трехмерен, так как распределение температур определяется не только потоками тепла, перпендикулярными плоскости ограждения, но и потоками тепла в его плоскости. Поле температур симметрично относительно координатных плоскостей, поэтому для расчета возможно вырезать исследуемую область конструкции плоскостями, параллельными координатным (на рис. 4 помечено буквами ADBC). На рис. 5 аксонометрическая проекция этой части конструкции. Условия теплообмена: на плоскостях AOD'D, CC'OA, BB'D'D, CC'B'B тепловые потоки, перпендикулярные осям координат ОХ и СУ, равны нулю; на плоскостях ACBD и OC'B'D' возможно задать граничные условия второго рода - для плоскости ACBD t н=-40°С и aн=23 Вт/(м2·°С), для плоскости OC'B'D' t в=18°С и aв=8,7 Вт/(м2·°С).

Согласно принятой методике расчета трехмерного температурного поля исследуемая область расчленяется на 3528 элементарных параллелепипедов. Расчет выполняется на ЭВМ. В результате расчета получаем осредненный тепловой поток Q =3,108 Вт. Площадь рассчитанного фрагмента F =0,35·0,35=0,1225 м2.

Приведенное сопротивление теплопередаче рассчитанного участка и всей панели определяется по формуле (4)

 м2·°С/Вт

Пример 8. Определить приведенное сопротивление теплопередаче трехслойной конструкции стеновой панели с обрамляющими ребрами.

Рис. 5. Схема расчета конструкции панели совмещенной крыши

А. Исходные данные

1. Конструкция стеновой панели Н5В дома серии 90 из керамзитобетона плотностью 1400 кг/м3 с коэффициентом теплопроводности 0,65 Вт/(м·°С) приведена на рис. 6. Средний теплоизоляционный слой из пенополистирольных плит толщиной 15 см плотностью 40 кг/м3 с коэффициентом теплопроводности 0,05 Вт/(м·°С). Панель размером 2990´2900´400 мм имеет окно 1510´1510 мм.

2. В расчете приняты следующие условия на поверхностях ограждения.

снаружи t н = -30°С и aн=23 Вт/(м2·°С);

внутри t в=18°С и aв=8,7 Вт/(м2·°С).

Б. Порядок расчета

Так же, как и в предыдущем примере величину Q определяем расчетом трехмерного температурного поля. При расчете границы панели принимаем в середине вертикального и горизонтального стыков, при этом толщиной слоя раствора пренебрегаем. Таким образом, получаем высоту панели 2770 мм, ширину 2900 мм.

По условию симметрии температурного поля при расчете можно рассмотреть половину панели, расположить ее относительно осей координат, как показано на рис. 6.

Рис. 6. Схема конструкции и расчета стеновой панели с обрамляющими ребрами

а - схема панели; б - участок CBAD; выделенный для расчета на ЭВМ

Определим граничные условия. На плоскостях АОВ'B, DD'C'C, AOD'D и BB'C'C тепловые потоки равны нулю. На плоскостях AВСD и OB'C'D' - указанные выше условия теплообмена второго рода.

Согласно методике расчета исследуемая область расчленяется на 4446 элементарных параллелепипедов. В результате расчета на ЭВМ осредненный тепловой поток через поверхность Q =101,61 Вт.

Приведенное сопротивление теплопередаче (по формуле (4)):

 м2·°С/Вт

Рис. 7. Схема конструкции стеновой панели на гибких связях с расчленением на расчетные участки


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: