Магнитно-оптический накопитель: Принцип физического действия, параметры и характеристики

Магнитооптические накопители (Magneto-Optical) представляют собой накопитель информации, в основу которого положен магнитный носитель с оптическим управлением. Поверхность магнитооптического диска покрыта сплавом, свойства которого меняются как под воздействием тепла, так и под воздействием магнитного поля. Если нагреть диск сверх некоторой температуры (температуры Кюри), то становится возможным изменение магнитной поляризации посредством небольшого магнитного поля.

Световой импульс сфокусированного лазера быстро разогревает магнитный материал в одно крошечной точке практически до температуры Кюри, а записывающая головка генерирует поле, достаточное для изменения ориентации намагниченности данной точки. Когда точка остывает, внесенные изменения блокируются высокой коэрцитивной силой. 

Чтение диска основано на способности магнитной среды изменять поляризацию света. Возвращенный луч проходит через линейный поляризатор. Он пропускает фотоны, отразившиеся от участка с одной ориентацией, и не пропускает практически ни одного фотона отразившегося от участка с противоположенной ориентацией намагниченности. Отмечая скачки в амплитуде отраженного луча можно считывать ориентацию магнитного поля на поверхности среды.

МО диски могут быть односторонними 3,5” емкости 128, 230, и 640 Мб. Двухсторонними 5,25” емкостью 600 Мб. – 2,6 Гб. 2,5” диски Mini Disk Data фирмы Sony, созданы специально для аудиоустройств, имеют емкость 140 Мб. 12” диски для однократной записи емкостью 3,5 – 7 Гб. Большое распространение получили при построении оптических библиотек.

 

Голографическое запоминающее устройство: Теория и принцип физического действия.

Оптоэлектронные устройства находят все более широкое приме­нение в вычислительной технике. Наиболее перспективными в на­стоящее время считаются так называемые голографические устрой­ства памяти ЭВМ, основанные на принципах голографии — нового, быстро развивающегося направления оптоэлектроники.

Прежде чем познакомиться с работой оптического запоминающего устройства (ЗУ), необходимо хотя бы в общих чертах рассмотреть сущность голографического отображения информации.

В 1947 г. английский ученый Д. Габор разработал метод записи и вос­становления пространственной структуры световой волны (волнового фрон­та), который получил название голографии.

Известно, что обычное фотографическое изображение того или иного объекта не дает представления о его объемных свойствах. Это происходит потому, что фотопластинка реагирует только на среднюю интенсивность света при экспонировании и не способна реагировать на фазу световой волны, ко­торая зависит от расстояния между объектом и фотопластинкой. Д. Габор обратил внимание на то, что при фотографировании всегда приходится осу­ществлять наводку на резкость, иначе изображение будет нечетким. Между тем, независимо от наводки на резкость, с лучами света, образующими изоб­ражение на фотопластинке, никаких изменений на участке между объектом и фотопластинкой не происходит. В связи с этим Д. Габор предположил, что изображение объекта присутствует в скрытом от наблюдателя виде в любой

Рис. 1 Ввод излучения в световод:

а—безлинзовая система (1—кристалл световода; активная излучающая область; 3— световод: 4— оптический клей); б—с помощью фокусирующей линзы (1—излуча­тель; 2 — фокусирующий элемент; 3 - световод)

плоскости между объектом и фотопластинкой. Иначе говоря, изображение в том или ином виде содержится в самой структуре световой волны, распро­страняющейся от объекта к объективу фотоаппарата. Именно эта волна несет наиболее полную информацию об объекте, причем эта информация оказы­вается зашифрованной в амплитудных и фазовых изменениях волнового фрон­та. Таким образом, для получения необходимой информации об объекте, в том числе и о его объеме, достаточно зафиксировать (записать) пространственную структуру световой волны, а затем, используя эту запись, восстановить изоб­ражение объекта. Этот двухступенчатый процесс записи и восстановления волнового фронта, несущего информацию об объекте, и называется голографией, а зафиксированная пространственная структура световой волны — голограммой.

Каким же образом можно зафиксировать на фотопластинке ч амплитуду, и фазу световой волны? Д. Габор предложил использовать для записи голограммы явление интерференции двух когерентных световых лучей, а для восстановления изображения с голограммы — явление дифракции света.

Как известно, при интерференции волны от двух одинаковых источников света, расположенных на некотором расстоянии друг от друга, в любой точ­ке пространства будут накладываться друг на друга, причем в некоторых точках произойдет удвоение амплитуды, а в некоторых амплитуда колебаний окажется равной нулю. Это дает основание утверждать, что в интерференци­онной картине содержится определенная фазовая информация, позволяю­щая определить расстояние от какого-то места интерференционной картины до источника (или источников) изучения. Величина максимумов распреде­ления поля в интерференционной картине позволяет оценить интенсивность излучения, а соотношение между максимумами и минимумами — когерент­ность. Следовательно, в интерференционной картине (голограмме) записана вся возможная информация об излучении источников.

Когерентный луч света, который освещает объект и рассеивается им, на­зывают сигнальным; луч, создающий когерентный фон — опорным.

Одна из важнейших особенностей голографии — возможность записи большого числа голограмм на одной и той же фотопластинке при использо­вании по-разному направленных опорных лучей.

Если для записи голограммы необходимы два источника когерентного изучения, то для восстановления изображения объекта голограмму доста­точно осветить только одним опорным лучом. Для извлечения информацииизголограммы обычно пользуются той же установкой, что и для голографирования. Голограмма устанавливается на то же место, где находилась фотопластинка при изготовлении голограммы, и облучается лучом лазера.

За счет явления дифракции луч света после прохождения голограммы разделяется на три составляющих: одна из них проходит через голограмму без изменения направления (так называемый луч нулевого дифракционного порядка); два других отклоняются от первоначального направления на не­который угол, зависящий от длины волны и шага интерференционных полос, зафиксированных на голограмме (лучи первого и второго дифракционного порядков). Эти лучи содержат всю информацию о голограмме, а наблюдатель, фиксирующий их, получает наиболее полное представление о форме и объеме соответствующего объекта.

.'Рассмотрим теперь возможности записи информации в голографических ЗУ вычислительных машин (рис. 2)

.Объектом записи в вычислительной технике обычно является. ‘Двумерная матрица двоичных знаков. При записи информации луч лазера с помощью системы зеркал разделится на два: сигнальный, проходящий через запоминаемый объект, и опорный. Направление опорного луча управляется дефлектором — устройством, состоя-

Рис. 2 структурная схема голографического запоминающего устройства (ЗУ)

щим из модулятора поляризации света и лучепреломляющего кри­сталла. В зависимости от комбинации управляющих напряжений, поступающих на вход модулятора, можно получить множество пространственных положений светового луча. Изменение дефлек­тором направления опорного луча позволяет последовательно за­писать необходимое.число голограмм.

Цифровая информация, подлежащая записи, наносится на так называемый транспарант, представляющий собой двумерную матрицу прозрачных и непрозрачных участков, соответствующих единицам и нулям двоичного кода.

При воспроизведении информации дефлектор настраивается на определенное положение опорной волны и таким образом выбира­ется изображение требуемого транспаранта. Сигнальный луч при этом перекрывается затвором. Дальнейшая выборка нужной ин­формации осуществляется электронным путем при обработке сиг­налов, зафиксированных при воспроизведении на матрице фото­приемников.

Стандартные фотопластинки, используемые в голографических ЗУ, обеспечивают сочетание высокой разрешающей способности (до 3 • 103.линий/мм) и фото чувствительности (порядка 10 в -5Дж/см2). Емкость памяти типичного голографического ЗУ составляет 106 бит/с.

Повышенный интерес к топографическим ЗУ объясняется не ­только большой информационной емкостью голограмм. Основным фактором является высокая помехоустойчивость голографической записи, поскольку при любых видах помех интерференционная картина записанного изображения практически не нарушается.

2. Оптоэлектроника - перспективы развития.

Оптоэлектроника как самостоятельное научно-техническое направление возникла сравнительно недавно, а ее достижения неразрывно связаны с развитием современной микроэлектроники. Тяжело представить себе современную жизнь без CD-ROM, DVD, оптоволоконных кабелей, лазерных принтеров, дистанционных пультов и всего того, что дала нам оптоэлектроника и без чего мы уже не мыслим жизнь.

Оптоэлектроника – это наука будующего.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: