double arrow

Контрольные карты для количественных данных


Количественные данные представляют собой наблюдения, полученные с помощью измерения и записи значений некоторой характеристики для каждой единицы, рассматриваемой в подгруппе, например длина в метрах, сопротивление в омах, шум в децибелах и т.д. Карты для количественных данных, и особенно простейшие из них (-и R-карты), - это классические контрольные карты, применяемые для управления процессами.

Контрольные карты для количественных данных имеют следующие преимущества:

а) большинство процессов и их продукция на выходе имеют характеристики, которые могут быть измерены, так что применимость таких карт потенционально широка;

б) измеренное значение содержит больше информации, чем простое утверждение «да - нет»;

в) характеристики процесса могут быть проанализированы безотносительно установленных требований. Карты запускаются вместе с процессом и дают независимую картину того, на что процесс способен. После этого характеристики процесса можно сравнивать или нет с установленными требованиями;

г) хотя получение количественных данных дороже, чем альтернативных, объемы подгрупп для количественных данных почти всегда гораздо меньше и при этом намного эффективнее. Это позволяет в некоторых случаях снизить общую стоимость контроля и уменьшить временной разрыв между производством продукции и корректирующим воздействием.

Для контрольных карт, использующих количественные данные, предполагается нормальное (гауссово) распределение для вариаций внутри выборок, причем отклонения от этого предположения влияют на эффективность карт. Коэффициенты для вычисления контрольных границ выведены при условии нормальности. Поскольку контрольные границы используются только как эмпирические критерии при принятии решений, целесообразно пренебрегать малыми отклонениями от нормальности. Благодаря центральной предельной теореме выборочные средние имеют распределение, приближающееся к нормальному с ростом объема выборки, даже когда отдельные наблюдения не подчиняются нормальному закону. Это обосновывает возможность предположения о нормальности для -карт даже при объемах выборок, столь малых как 4 или 5 единиц, взятых для проведения контроля. Если используют отдельные наблюдения для изучения возможностей процесса, истинное распределение важно. Рекомендуется периодически перепроверять выполнение таких предположений, чтобы убедиться, что используемые данные принадлежат одной совокупности. Распределения размахов и стандартных отклонений отличаются от нормального, хотя предположение нормальности использовалось при оценке коэффициентов для вычисления контрольных границ. Такие границы, как правило, приемлемы для процедур принятия эмпирических решений.

Карты средних ()и размахов (R) или выборочных стандартных отклонений (s)

Карты для количественных данных отражают состояние процесса через разброс (изменчивость от единицы к единице) и через расположение центра (среднее процесса). Поэтому контрольные карты для количественных данных почти всегда применяют и анализируют парами - одна карта для расположения и одна - для разброса. Наиболее часто используют пару - и R-карту. В таблицах 1 и 2 приведены формулы контрольных границ и коэффициенты для соответствующих карт.

Таблица 1 -Формулы контрольных границ для карт Шухарта с использованием количественных данных

Статистика Стандартные значения не заданы Стандартные значения заданы
Центральная линия UCL и LCL Центральная линия UCL и LCL
или Х0 или m Х0 ± Аs0
R R0 илиd2s0 D1s0,D2s0
s s0 илиС4s0 B5?0,B6?0
Примечание - Заданы стандартные значения Хоили m, R0, S0 илиs0.

Таблица 2 - Коэффициенты для вычисления линий контрольных карт

Число наблюдений в подгруппе n Коэффициенты для вычисления контрольных границ Коэффициенты для вычисления центральной линии
А1 А2 А3 В3 В4 В5 В6 D1 D2 D3 D4 С4 1/С4 d2 1/d2
2,121 1,880 2,659 0,000 3,267 0,000 2,606 0,000 3,686 0,000 3,267 0,7979 1,2533 1,128 0,8865
1,732 1,023 1,954 0,000 2,568 0,000 2,276 0,000 4,358 0,000 2,574 0,8886 1,1284 1,693 0,5907
1,500 0,729 1,628 0,000 2,266 0,000 2,088 0,000 4,696 0,000 2,282 0,9213 1,0854 2,059 0,4857
1,342 0,577 1,427 0,000 2,089 0,000 1,964 0,000 4,918 0,000 2,114 0,9400 1,0638 2,326 0,4299
1,225 0,483 1,287 0,030 1,970 0,029 1,874 0,000 5,078 0,000 2,004 0,9515 1,0510 2,534 0,3946

Сейчас читают про: