Физическое и математическое моделирование

Научные исследования, связанные с созданием новых машин

Основными направлениями научных иссле­дований, связанных с повышением качества, надежности и безопасности машин и обо­рудования, являются:

фундаментальные исследования в области новых рабочих процессов, ресурсосберегаю­щих технологий и новых конструкционных материалов;

создание, освоение и внедрение современ­ных методов конструирования машин, обосно­вания их оптимальных рабочих параметров, конструктивных форм;

получение новых материалов, разработка деталей, узлов и агрегатов с соблюдением требований по технологическим параметрам;

разработка новых метрологических мето­дов, систем и средств;

проведение ускоренных и обычных испыта­ний на надежность и ресурс моделей и на­турных изделий;

организация эксплуатации машин с за­данной степенью надежности, безопасности, экономичности при соблюдении требований эргономики и экологии.

Первостепенное значение в современном машиностроении приобретают проблемы на­дежности и безопасности техники с учетом роли человеческого фактора.

Научной базой применения концептуаль­ных, конструкторских, технологических и материаловедческих решений для всех этапов создания машин и конструкций должны стать принципы и методы физического и ма­тематического моделирования.

Физическое и математическое моделиро­вание в машиностроении бази­руется на общих подходах, развиваемых на основе фундаментальных наук, прежде всего математики, физики, химии и др.

Математическое моделирование и вычис­лительный эксперимент становятся новым ме­тодом анализа сложных машин, рабочих про­цессов и системы машина — человек — сре­да. Физическое и математическое моделиро­вание проводится в несколько стадий.

Начинается моделирование с постановки и уточнения задачи, рассмотрения физи­ческих аспектов, определения степени влия­ния на моделируемые процессы различных факторов в программируемых условиях функ­ционирования моделируемых систем или про­цесса. На этой основе строится физическая модель.

Затем на ее базе строится математиче­ская модель, включающая в себя матема­тическое описание моделируемого процесса или механической системы в соответствии с закономерностями кинематики и динамики, поведения материалов под действием нагру­зок и температур и т. д. Модель исследуется по таким направлениям, как соответствие поставленной задаче, существование решения и т. п.

На третьей стадии выбирается вычислитель­ный алгоритм решения задачи моделирова­ния. Современные численные методы позво­ляют снять ограничения на степень сложно­сти математических моделей.[1]

Далее используя современные математические пакеты программ, такие как MathCad, Matlab, которые обладают большим набором возможностей и функций и позволяют решать задачи как аналитическими, так и численными методами, проводят вычислительные эксперименты.

При проведении вычислений и получении результатов необходимо особое внимание уделять грамотности и правильности представления решений.

Завершающая стадия предусматривает анализ полученных результатов, сопостав­ление их с данными физических экспери­ментов на натурных образцах изделий. В слу­чае необходимости ставится задача уточне­ния выбранной математической модели с по­следующим повторением указанных выше стадий.

После завершения работ по физическому и математическому моделированию форми­руются общее заключение и выводы по конструкторским, технологическим и эксплуа­тационным мероприятиям, связанным с созда­нием новых материалов и технологий, обес­печением условий надежной и безопасной работы машин, удовлетворением требований эргономики и экологии.[1]

В последнее время чисто математическое моделирование крайне редко встречается при проектировании и конструировании механизмов и деталей. Традиционное математическое моделирование при проектировании современных механизмов и деталей, заменяется на компьютерное моделирование. Основным методом применяемым современными программными продуктами является метод конечных элементов. Подобное моделирование помимо точности вычисления и наглядного представления о поведении объекта исследования в заданных условиях ускоряет процесс проектирования и уменьшает затраты на проведение исследований с физическими моделями.

Создание новых машин и конструкций с повышенным уровнем рабочих параметров, экологических и эргономических требований представляет собой сложную комплексную проблему, эффективное решение которой ба­зируется на физическом и математическом моделировании.

Разработка эскизного проекта предусмат­ривает построение физических моделей на основании опыта создания прототипов. Ма­тематические модели включают новые зна­ния об анализе и синтезе структурных и ки­нематических схем, о динамических характе­ристиках взаимодействия между основными элементами с учетом рабочих сред и про­цессов. На этом же этапе формируются и решаются в общем виде вопросы экологии и эргономики.

При разработке технического проекта дол­жен осуществляться переход к физическим моделям основных узлов, испытываемым в лабораторных условиях. К математиче­скому обеспечению технического проекта от­носятся системы автоматизированного про­ектирования.

Создание принципиально новых машин (машин будущего) требует совершенствова­ния методов математического моделирова­ния и построения новых моделей. Это в зна­чительной мере относится к уникальным объ­ектам новой техники (атомная и термо­ядерная энергетика, ракетная, авиационная и криогенная техника), а также к новым технологическим, транспортным аппаратам и устройствам (лазерные и импульсные техно­логические установки, системы на магнит­ной подвеске, глубоководные аппараты, адиа­батные двигатели внутреннего сгорания и др.).

На этапе рабочего проектирования физи­ческое моделирование предполагает созда­ние макетов и испытательных стендов для проверки конструкторских решений. Мате­матическая сторона этого этапа связана с разработкой автоматизированных систем под­готовки технической документации. Матема­тические модели уточняют по мере детали­зации и уточнения граничных условий за­дач конструирования.

Одновременно с проектированием решают­ся конструкторско-технологические задачи вы­бора материалов, назначения технологий изготовления и контроля. В области конструк­ционного материаловедения используют экспе­риментальное определение физико-механи­ческих свойств на лабораторных образцах как при стандартных испытаниях, так и при испытаниях в условиях, имитирующих экс­плуатационные. При изготовлении высокоот­ветственных деталей и узлов из новых ма­териалов (высокопрочные коррозионно- и радиационно стойкие, плакированные, компо­зиционные и др.) необходимо проводить спе­циализированные испытания по определению предельных состояний и критериев повреж­дения. Математическое моделирование исполь­зуют для построения имитационных моделей механического поведения материалов в раз­личных условиях нагружения с учетом технологии получения материалов и формообразования деталей машин. Имитационные модели используют при выполнении слож­ного математического анализа тепловых, диффузионных, электромагнитных и других явлений, сопутствующих новым технологиям.

На основе физических и имитационных мо­делей получают сложный комплекс физико-механических свойств, характеристики ко­торых должны использоваться при создании на базе компьютеров банков данных о современных и перспективных материалах.

На этапе разработки технологии изготов­ления деталей, узлов и машин в целом физическое моделирование используют при ла­бораторной и опытно-промышленной отработ­ке технологических процессов как традици­онных (механообработка, литье и др.), так и новых (лазерная обработка, плазменная, взрывная, магнитно-импульсная и др.).

Параллельно с технологическими процес­сами разрабатываются физические модели, а также "принципы контроля и дефектоско­пии материалов и готовых изделий. Мате­матические модели технологических процес­сов позволяют решать сложные задачи теплопроводности, термоупругости, сверх пластичности, волновых и других явлений с целью рационального выбора для данных деталей эффективных методов и параметров обработки.

На этапе создания машин и конструкций, когда осуществляется доводка и испытания головных образцов и опытных партий, фи­зическое моделирование предусматривает про­ведение стендовых и натурных испытаний. Стендовые испытания обеспечивают высокую информативность и сокращают сроки довод­ки опытных образцов изделий массового и крупносерийного производства. Натурные ис­пытания необходимы для оценки работоспо­собности и надежности уникальных изделий на предельных режимах. При этом задачами математического моделирования становятся алгоритмы и программы управления испыта­ниями. Анализ получаемой эксперименталь­ной информации следует проводить на компьютере в реальном масштабе времени.

При эксплуатации машин физическое мо­делирование используют для диагностики со­стояния и обоснования продления ресурса безопасной работы. Математическое(компьютерное) модели­рование на этом этапе имеет целью построе­ние моделей эксплуатационных повреждений по комплексу принятых при проектировании критериев: Проработка таких моделей вы­полняется в настоящее время для объектов атомного и теплового энергетического маши­ностроения, ракетной и авиационной техники и других объектов.[1]


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: