Научные исследования, связанные с созданием новых машин
Основными направлениями научных исследований, связанных с повышением качества, надежности и безопасности машин и оборудования, являются:
фундаментальные исследования в области новых рабочих процессов, ресурсосберегающих технологий и новых конструкционных материалов;
создание, освоение и внедрение современных методов конструирования машин, обоснования их оптимальных рабочих параметров, конструктивных форм;
получение новых материалов, разработка деталей, узлов и агрегатов с соблюдением требований по технологическим параметрам;
разработка новых метрологических методов, систем и средств;
проведение ускоренных и обычных испытаний на надежность и ресурс моделей и натурных изделий;
организация эксплуатации машин с заданной степенью надежности, безопасности, экономичности при соблюдении требований эргономики и экологии.
Первостепенное значение в современном машиностроении приобретают проблемы надежности и безопасности техники с учетом роли человеческого фактора.
Научной базой применения концептуальных, конструкторских, технологических и материаловедческих решений для всех этапов создания машин и конструкций должны стать принципы и методы физического и математического моделирования.
Физическое и математическое моделирование в машиностроении базируется на общих подходах, развиваемых на основе фундаментальных наук, прежде всего математики, физики, химии и др.
Математическое моделирование и вычислительный эксперимент становятся новым методом анализа сложных машин, рабочих процессов и системы машина — человек — среда. Физическое и математическое моделирование проводится в несколько стадий.
Начинается моделирование с постановки и уточнения задачи, рассмотрения физических аспектов, определения степени влияния на моделируемые процессы различных факторов в программируемых условиях функционирования моделируемых систем или процесса. На этой основе строится физическая модель.
Затем на ее базе строится математическая модель, включающая в себя математическое описание моделируемого процесса или механической системы в соответствии с закономерностями кинематики и динамики, поведения материалов под действием нагрузок и температур и т. д. Модель исследуется по таким направлениям, как соответствие поставленной задаче, существование решения и т. п.
На третьей стадии выбирается вычислительный алгоритм решения задачи моделирования. Современные численные методы позволяют снять ограничения на степень сложности математических моделей.[1]
Далее используя современные математические пакеты программ, такие как MathCad, Matlab, которые обладают большим набором возможностей и функций и позволяют решать задачи как аналитическими, так и численными методами, проводят вычислительные эксперименты.
При проведении вычислений и получении результатов необходимо особое внимание уделять грамотности и правильности представления решений.
Завершающая стадия предусматривает анализ полученных результатов, сопоставление их с данными физических экспериментов на натурных образцах изделий. В случае необходимости ставится задача уточнения выбранной математической модели с последующим повторением указанных выше стадий.
После завершения работ по физическому и математическому моделированию формируются общее заключение и выводы по конструкторским, технологическим и эксплуатационным мероприятиям, связанным с созданием новых материалов и технологий, обеспечением условий надежной и безопасной работы машин, удовлетворением требований эргономики и экологии.[1]
В последнее время чисто математическое моделирование крайне редко встречается при проектировании и конструировании механизмов и деталей. Традиционное математическое моделирование при проектировании современных механизмов и деталей, заменяется на компьютерное моделирование. Основным методом применяемым современными программными продуктами является метод конечных элементов. Подобное моделирование помимо точности вычисления и наглядного представления о поведении объекта исследования в заданных условиях ускоряет процесс проектирования и уменьшает затраты на проведение исследований с физическими моделями.
Создание новых машин и конструкций с повышенным уровнем рабочих параметров, экологических и эргономических требований представляет собой сложную комплексную проблему, эффективное решение которой базируется на физическом и математическом моделировании.
Разработка эскизного проекта предусматривает построение физических моделей на основании опыта создания прототипов. Математические модели включают новые знания об анализе и синтезе структурных и кинематических схем, о динамических характеристиках взаимодействия между основными элементами с учетом рабочих сред и процессов. На этом же этапе формируются и решаются в общем виде вопросы экологии и эргономики.
При разработке технического проекта должен осуществляться переход к физическим моделям основных узлов, испытываемым в лабораторных условиях. К математическому обеспечению технического проекта относятся системы автоматизированного проектирования.
Создание принципиально новых машин (машин будущего) требует совершенствования методов математического моделирования и построения новых моделей. Это в значительной мере относится к уникальным объектам новой техники (атомная и термоядерная энергетика, ракетная, авиационная и криогенная техника), а также к новым технологическим, транспортным аппаратам и устройствам (лазерные и импульсные технологические установки, системы на магнитной подвеске, глубоководные аппараты, адиабатные двигатели внутреннего сгорания и др.).
На этапе рабочего проектирования физическое моделирование предполагает создание макетов и испытательных стендов для проверки конструкторских решений. Математическая сторона этого этапа связана с разработкой автоматизированных систем подготовки технической документации. Математические модели уточняют по мере детализации и уточнения граничных условий задач конструирования.
Одновременно с проектированием решаются конструкторско-технологические задачи выбора материалов, назначения технологий изготовления и контроля. В области конструкционного материаловедения используют экспериментальное определение физико-механических свойств на лабораторных образцах как при стандартных испытаниях, так и при испытаниях в условиях, имитирующих эксплуатационные. При изготовлении высокоответственных деталей и узлов из новых материалов (высокопрочные коррозионно- и радиационно стойкие, плакированные, композиционные и др.) необходимо проводить специализированные испытания по определению предельных состояний и критериев повреждения. Математическое моделирование используют для построения имитационных моделей механического поведения материалов в различных условиях нагружения с учетом технологии получения материалов и формообразования деталей машин. Имитационные модели используют при выполнении сложного математического анализа тепловых, диффузионных, электромагнитных и других явлений, сопутствующих новым технологиям.
На основе физических и имитационных моделей получают сложный комплекс физико-механических свойств, характеристики которых должны использоваться при создании на базе компьютеров банков данных о современных и перспективных материалах.
На этапе разработки технологии изготовления деталей, узлов и машин в целом физическое моделирование используют при лабораторной и опытно-промышленной отработке технологических процессов как традиционных (механообработка, литье и др.), так и новых (лазерная обработка, плазменная, взрывная, магнитно-импульсная и др.).
Параллельно с технологическими процессами разрабатываются физические модели, а также "принципы контроля и дефектоскопии материалов и готовых изделий. Математические модели технологических процессов позволяют решать сложные задачи теплопроводности, термоупругости, сверх пластичности, волновых и других явлений с целью рационального выбора для данных деталей эффективных методов и параметров обработки.
На этапе создания машин и конструкций, когда осуществляется доводка и испытания головных образцов и опытных партий, физическое моделирование предусматривает проведение стендовых и натурных испытаний. Стендовые испытания обеспечивают высокую информативность и сокращают сроки доводки опытных образцов изделий массового и крупносерийного производства. Натурные испытания необходимы для оценки работоспособности и надежности уникальных изделий на предельных режимах. При этом задачами математического моделирования становятся алгоритмы и программы управления испытаниями. Анализ получаемой экспериментальной информации следует проводить на компьютере в реальном масштабе времени.
При эксплуатации машин физическое моделирование используют для диагностики состояния и обоснования продления ресурса безопасной работы. Математическое(компьютерное) моделирование на этом этапе имеет целью построение моделей эксплуатационных повреждений по комплексу принятых при проектировании критериев: Проработка таких моделей выполняется в настоящее время для объектов атомного и теплового энергетического машиностроения, ракетной и авиационной техники и других объектов.[1]