Истечение через насадки

Анализ полученных формул (4.6) и (4.7) позволяет заключить, что увеличение расхода Q при истечении через отверстие с неизменными So и Hр, возможно при увеличении коэффициента рас­хода . Решению этой задачи служат насадки различной конструкции. Различают следующие типы насадков: цилиндрические (внешний и внутренний), конические (сходящийся и расходящийся), коноидальные и комбинированные.

Внешним цилиндрическим насадком называется короткая трубка или сверление в толстой стенке без обработки входной кромки (рисунок 4.3). Его длина l = (35) d, где d — диаметр отверстия.

На практике при истечении в газовую среду можно наблюдать два режима истечения жидкости через цилиндрический насадок: безотрывный (см. рисунок 4.3, а)и с отрывом потока от стенок (см. рис. 4.3, б).

Безотрывный режим истечения характеризуется тем, что внутри насадка поток жидкости вначале сжимается до некоторого минимального поперечного сечения, площадь которого можно опре­делить по значению коэффициента сжатия струи , взятого для случая истечения жидкости через отверстие в тонкой стенке, а затем расширяется до размеров отверстия в насадке. В итоге при таком режиме истечения из насадка на его выходе сжатие струи отсутствует (= 1) и площадь сечения струи равна площади проходного сечения отверстия в насадке. Поэтому в данном случае при определении расхода Q по формуле (4.7) коэффициент расхода = .

Для этого случая при турбулентном режиме течения жидкости внутри насадка (α = 1) и коэффициенте потерь = 0,5 (потери напора определяются как потери при внезапном сужении) коэффициент расхода

.

Сравнение полученных коэффициентов скорости и расхода со значениями этих ко­эффициентов при истечении жидкости через отверстие в тонкой стенке (= 0,97, = 0,62) показывает, что при безотрывном истечении через цилиндрический насадок расход Q получается больше, чем при истечении через такое же отверстие в тонкой стенке. Средняя скорость жидкости в потоке на выходе из насадка при этом получается меньше. Уменьшение скорости вызвано большими потерями напора в насадке по сравнению с потерями, которые возникают на входной кромке отверстия в тонкой стенке.

Увеличение расхода Q при этом является следствием отсутствия сжатия струи на выходе из насадка. Кроме того, при безотрывном истечении на входе в насадок поток сжимается, а значит, в соответствии с законом Бернулли скорость движения жидкости увеличивается, а давление в этом месте уменьшается по сравнению с давлением среды, куда происходит истечение. Причем степень сжатия потока, а следовательно, и степень уменьшения давления в узком сечении потока тем больше, чем больше расчетный напор Hр. При этом на входной кромке отверстия создается больший перепад давления, чем при истечении жидкости через отверстие в тонкой стенке при одном и том же Hр. В результате этого обеспечиваются дополнительный приток жидкости из бака в насадок и увеличение расхода Q.

Со сжатием потока на входе в насадок, а также с зависимостью степени сжатия от расчетного напора Нр связано внезапное изменение режима истечения через насадок. Это происходит при определенном критическом расчетном напоре Hкр, который при истечении воды в атмосферу составляет около 14 м водяного столба. Внешне эта смена режима истечения заключается в том, что поток жидкости отрывается от стенок насадка и жидкость истекает в атмосферу, не касаясь их. Этот режим истечения получил название истечение с отрывом потока от стенок насадка (см. рисунок 4.3, б).

При истечении до отрыва потока от стенок давление в узком сечении потока приближается к давлению насыщенных паров. Как известно, в потоке при таком давлении следует ожидать возникновения кавитации. Однако кавитационный режим течения при истечении в газовую среду не успевает сформироваться. Возникающая начальная стадия кавитации способствует проникновению газовой среды внутрь насадка. Начиная с этого момента струя жидкости после сжатия теряет взаимодействие со стенками насадка и уже не расширяется, а перемещается внутри насадка, не соприкасаясь с его стенками. Истечение становится таким же, как и при истечении через отверстие в тонкой стенке (см. подраздел 4.1), с теми же значениями коэффициентов , и . Таким образом, при смене режима истечения происходит скачкообразное уменьшение расхода приблизительно на 20 % за счет существенного сокращения площади сечения потока.

Следует также отметить, что если после отрыва потока от стенок напор Hр начать снижать, то режим истечения с отрывом сохраняется вплоть до самых малых значений напора, пока не произойдет самопроизвольное смачивание внутренней поверхности насадка. Это значит, что режим истечения с отрывом через цилиндрический насадок возможен и при Hр < Hкр. Следовательно, при Hр < Hкр возможны оба режима истечения.

Если жидкость истекает через цилиндрический насадок под уровень, то отрыва потока от стенок не происходит. Начиная с момента, когда в узком сечении потока внутри насадка давление становится близким к давлению насыщенных паров жидкости, на входе в насадок возникает кавитация и происходит связанное с ней увеличение сопротивления насадка.

Итак, использование внешнего цилиндрического насадка вместо отверстия в тонкой стенке обеспечивает в режиме безотрывного истечения при тех же значениях расчетного напора и поперечных размеров отверстия увеличение расхода через насадок.

Однако внешний цилиндрический насадок имеет и недостатки:

- в режиме безотрывного истечения — большое сопротивление и недостаточно высокий коэффициент расхода;

- в режиме истечения с отрывом — низкий коэффициент расхода;

- двойственность режима истечения в газовую среду при Hр < Hкр;

- возможность возникновения кавитации при истечении под уровень.

Это необходимо учитывать при использовании цилиндрического насадка в качестве жиклера, дросселя или форсунки. Улучшить внешний цилиндрический насадок можно за счет скругления входной кромки насадка. Для жиклеров рекомендуется снятие фаски на входе в отверстие с углом конусности около 60°.

Чем больше радиус закругления входной кромки насадка, тем ниже его коэффициент сопротивления и тем выше коэффициент расхода. В пределе при радиусе кривизны, равном толщине стенки, цилиндрический насадок приближается к коноидальному насадку, или соплу.

 
 
Рисунок 4.4 – Примеры улучшенных насадков: а – коноидальный насадок, или сопло; б – диффузорный насадок


Коноидалъный насадок (сопло) (рисунок 4.4, а)очерчивается по форме естественно сжимающейся струи, поэтому поток жидкости на выходе насадка получается безотрывным, параллельно-струйным и устойчивым к возникновению кавитации. Для этого насадка коэффициент сжатия струи = 1, а коэффициент = = 0,96...0,99.

Диффузорный насадок (рисунок 4.4, б)представляет собой комбинацию сопла и диффузора. Установка диффузора с оптимальным углом на выходе позволяет, не меняя проходного сечения отверстия (сечение 1-1)и расчетного напора, повысить расход жидкости почти в 2,5 раза по сравнению с расходом через сопло. Недостатком диффузорного насадка является склонность его к возникновению кавитации в узком сечении 1-1.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: