Турбулентное течение

При турбулентном движении осредненная скорость мало меняется по сечению трубопровода. Область, где скорости почти не меняются по сечению, называется ядром течения, а слой у стенок, характеризующийся быстрым уменьшением значения скорости – пристенным слоем, толщина которого весьма мала и составляет доли миллиметра. Равномерное распределение скоростей в ядре объясняется интенсивным перемешиванием масс жидкости, что характерно для турбулентного движения.

Экспериментально получена формула для определения распределения скорости по сечению

, (5.12)

где - скорость на расстоянии y от стенки;

- max скорость на оси трубопровода.

Показатель степени n зависит от числа Re для гидравлически гладких труб и от относительной шероховатости для труб вполне шероховатых.

Природа касательных напряжений в турбулентном потоке существенно отличается от механизма возникновения касательных напряжений при ламинарном движении.

В процессе турбулентного перемешивания массы жидкости из центральной области, обладающие большими скоростями, перемещаются к периферии и наоборот.

Если при ламинарном течении потери напора на трение возрастают пропорционально скорости (расходу) в первой степени, то при переходе к турбулентному течению заметны некоторый скачок сопротивления и затем более крутое нарастание величины . (рис. 5.7)

Ввиду сложности турбулентного течения и трудностей его аналитического исследования, отсутствия достаточно строгой и точной теории, в большинстве случаев для практических расчетов, связанных с турбулентным течением жидкости в трубах, пользуется экспериментальными данными.

Рис. 5.7. Зависимость от и Q.

Основной расчетной формулой для потерь напора при турбулентном течении в круглых трубах является известная уже формула Вейсбаха – Дарси,

имеющая вид

, где - коэффициент потерь на трение при турбулентном течении.

Эта основная формула применима как при турбулентном, так и при ламинарном течении; различие лишь заключается в значениях коэффициента .

Коэффициент так же, как и является функцией числа Re, а также может зависеть от безразмерного геометрического фактора – относительной шероховатости внутренней поверхности трубы, т.е.

где (к) – средняя высота бугорков шероховатости, d – диаметр трубы.

(или к)-шероховатость.

Когда шероховатость трубы не влияет на ее сопротивление (на ), трубу называют гидравлически гладкой. Для этих случаев коэффициент является функцией лишь числа Re:

Существует ряд имперических формул для определения для турбулентного течения в гидравлически гладких трубах. Наиболее удобной является формула Конакова П.К.

, (5.13)

применяемая при Re от Reкр до Re, равного нескольким миллионным.

При 2300 < Re < 105 можно пользоваться формулой Блазиуса

. (5.14)

Трубы, в которых коэффициент гидравлического трения вовсе не зависит от числа Re, а только от относительной шероховатости, называют вполне шероховатыми. Коэффициент трения определяется в этом случае по формуле Б.Л. Шифринсона

. (5.15)

Область движения, в которой зависит и от Re, и от называют переходной (область смешанного трения)

То есть .

Характер влияния этих двух параметров на сопротивление труб отчетливо виден из графика (Рис. 5.8), полученного Н.Н. Никурадзе.

Никурадзе Н.Н. испытал на сопротивление ряд труб с искусственно созданной шероховатостью на их внутренней поверхности. Испытания были проведены, при широком диапазоне относительных шероховатостей , а также чисел Re . Результаты этих испытаний представлены на рис. 5.8.

Наклонные прямые А и В соответствуют законам сопротивления гладких труб, т.е. формулам (5.11) и (5.14)

Штриховыми линиями показаны кривые для труб с различной относительной шероховатостью .

Рис.5.8.

Из рассмотрения графика можно сделать следующие основные выводы:

1. При ламинарном течении шероховатость на сопротивление не влияет; штриховые линии практически совпадают с прямой А.

2. Критическое число Re от шероховатости практически не зависит; штриховые кривые отклоняются от прямой А приблизительно при одном и том же Reкр ().

3. В области турбулентного течения, но при небольших Re и шероховатость на сопротивление не влияет; штриховые линии на некоторых участках совпадают и прямой В.

4. При больших Re и больших относительных шероховатостях коэффициент перестает зависеть от Re и становится постоянным для данной относительной шероховатости (штриховые линии параллельны оси абсцисс).

Для расчетовудобно пользоваться формулой А.Д.Альтшуля, дающая зависимостьв явном виде

, (5.15а)

- эквивалентная шероховатость, учитывает не только среднюю высоту выступов, но и их форму.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: