Осложнения при эксплуатации промысловых ТП

Тепловой расчет нефтепроводов

ТЕПЛОВЫЕ РАСЧЕТЫ ТРУБОПРОВОДОВПарафинистые и застывающие нефти обычно перекачивают с подогревом для снижения вязкости и, следовательно, гидравлического сопротивления трубопроводов. В процессе перекачки температура снижается вследствие теплообмена с окружающей средой. Для правильной расстановки подогревате­лей и установления их режима работы необходимо знать закон распределения температуры вдоль трубопровода.

Падение температуры нефти по длине трубопровода можно определить из уравнения теплового баланса для элементарного участка

k(T—To)nDdx=—GcpdT, (V.81)

где k — коэффициент теплопередачи от нефти в окружающую среду; Т— температура жидкости на расстоянии х от начала трубопровода; То — температура окружающей среды; D — диаметр трубопровода; G — массовый расход нефти, ср — удельная массовая теплоемкость нефти.

Интегрируя формулу В. Г. Шухова (V.81), получаем для расчета температуры в любой точке трубопровода

k*Dx Пг

Т=Т„ + (Тн-Т,)е UCP. (V.82)

Таким образом, температура в конечной точке трубопровода Тк при х=1 рассчитывается по формуле

Гк=7о+(7'н-Го)е-Шу, (V.83) где Шу — параметр Шухова;

Если парафинистая нефть в трубопроводе охлаждается и выпадает парафин, то нужно учитывать скрытую теплоту кристаллизации парафина. В. И. Черникин предложил для этого внести соответствующие изменения в параметр Шухова:

где К — скрытая теплота кристаллизации парафина, равная 226—230 кДж/кг; е—относительное содержание парафина, выпадающего из нефти; Т. — температура, при которой начинается выпадение парафина; 7",— температура, для которой известно е. Формула (V.85) применима в диапазоне температур, в котором происходит выделение парафина.

Л. С. Лейбензон внес поправку в формулу В. Г. Шухова (V.83), учитывающую работу трения потока жидкости, превращающуюся в теплоту. Формула Л. С. Лейбензона записывается так:

Для труб среднего и большого диаметра коэффициент теплопередачи можно определить по уравнению

Основные виды - замораживание, отложения парафина, песка, окислов железа; борьба с коррозией; осуществление планово-предупредительных ремонтов; ликвидация аварий и т. д.Отложения парафина в трубопроводах приводят не только к снижению их пропускной способности, возрастанию гидравлических сопротивлений, но и к увеличению стойкости водонефтяной эмульсии, для разрушения которой придется применять более высокие температуры или потребуется больший расход деэмульгатора. Механизм формирования отложений на поверхности металла состоит в возникновении и росте кристаллов парафина непосредственно на контактирующей с нефтью поверхности, а затем на образовавшейся смоло-парафиновой подкладке. Отсюда следует, что способ накопления парафиновых отложений одинаков как для двух- и трехфазной системы, так и для четырехфазной системы, за исключением момента, определяющего возможность флотации кристаллов парафина глобулами воды и образования подвижной водной пленки на поверхности оборудования.

Появление в нефти песка или других механических примесей, как и появление воды, существенно изменить механизм парафинизации оборудования не может. По современным представлениям о механизме образования и роста парафиновых отложений особая роль отводится транспорту частиц парафина в пограничном ламинарном слое. В результате охлаждения нефти под воздействием более холодной окружающей среды в тонком пристенном слое возникает радиальный температурный градиент. Существование радиального температурного градиента приводит к образованию градиента концентрации растворенного парафина. За счет этого происходит движение растворенных частиц парафина к стенке трубы под действием молекулярной диффузии. По достижении частицами парафина стенки трубы или границы твердых отложений происходит их кристаллизация и выделение из раствора. Если температура в пристенном слое ниже уровня, при котором парафин начинает выпадать из нефти, то в потоке нефти будут содержаться кристаллы парафина, а жидкая фаза будет находиться в состоянии термодинамического равновесия с твердой фазой. Под действием градиента концентрации взвешенных частиц броуновское движение приводит к поперечному переносу вещества.

Защита трубопроводов от внутренней коррозии, что применяется в настоящее время все эти методы ингибиторной защиты не могут решить проблемы полностью. Добиться повышения надежности и снижения аварийности промысловых трубопроводов можно только за счет применения комплексных мер. Среди них основной, по-видимому, можно считать смену материала труб на коррозионной устойчивый, а также применение труб с антикоррозионным покрытием, то есть технические способы защиты +от коррозии. Технические способы защиты трубопроводов от внутренней коррозии. Кардинальным средством борьбы с коррозионным повреждением стальных труб является замена их на пластмассовые. Задача надежности защиты от внутренней коррозии решается с помощью технологии футерования трубных плетей полиэтиленом и специальной конструкцией стыка. Однако, единой методики выбора типа покрытия в зависимости от свойств транспортируемой среды и условий эксплуатации трубопровода не выработано.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: