double arrow

Нейронные процессоры

Одно из наиболее перспективных направлений разработки принципиально новых архитектур КС тесно связано с созданием компьютеров нового поколения на основе принципов обработки информации, заложенных в искусственных нейронных сетях (НС).

Первые практические работы по искусственным нейросетям и нейрокомпьютерам начались еще в 40-50-е годы. Под искусственной нейронной сетью (рис.4.1) обычно понимают совокупность элементарных преобразователей информации, называемых «нейронами», которые определенным образом соединены друг с другом каналами обмена информации – «синаптическими связями».


Рисунок 4.1 – Нейронная сеть

Нейрон (рис.4.2) представляет собой элементарный процессор, характеризующийся входным и выходным состоянием, передаточной функцией (функция активации) и локальной памятью.


Рисунок 4.2 – Искусственный нейрон

Состояния нейронов изменяются в процессе функционирования и составляют кратковременную память нейросети. Каждый нейрон вычисляет взвешенную сумму пришедших к нему по синапсам сигналов и производит над ней нелинейное преобразование. При пересылке по синапсам сигналы умножаются на некоторый весовой коэффициент. В распределении весовых коэффициентов заключается информация, хранящаяся в ассоциативной памяти НС. Основным элементом проектирования сети является ее обучение. При обучении и переобучении НС ее весовые коэффициенты изменяются. Однако они остаются постоянными при функционировании нейросети, формируя долговременную память.

НС может состоять из одного слоя, из двух, из трех и большего числа слоев, однако, как правило, для решения практических задач более трех слоев в НС не требуется.

Число входов НС определяет размерность гиперпространства, в котором входные сигналы могут быть представлены точками или гиперобластями из близко расположенных точек. Количество нейронов в слое сети определяет число гиперплоскостей в гиперпространстве. Вычисление взвешенных сумм и выполнение нелинейного преобразования позволяют определить, с какой стороны от той или иной гиперплоскости находится точка входного сигнала в гиперпространстве.

Возьмем классическую задачу распознавания образов: определение принадлежности точки одному из двух классов. Такая задача естественным образом решается с помощью одного нейрона (рис.4.2). Он позволит разделить гиперпространство на две непересекающиеся и невложенные гиперобласти. Входные сигналы в задачах, решаемых с помощью нейросетей, образуют в гиперпространстве сильно вложенные или пересекающиеся области, разделить которые с помощью одного нейрона невозможно. Это можно сделать, только проведя нелинейную гиперповерхность между областями. Ее можно описать с помощью полинома -го порядка. Однако степенная функция слишком медленно считается и поэтому очень неудобна для вычислительной техники. Альтернативным вариантом является аппроксимация гиперповерхности линейными гиперплоскостями. Понятно, что при этом точность аппроксимации зависит от числа используемых гиперплоскостей, которое, в свою очередь, зависит от числа нейронов в сети. Отсюда возникает потребность в аппаратной реализации как можно большего числа нейронов в сети. Количество нейронов в одном слое сети определяет ее разрешающую способность. Однослойная НС не может разделить линейно зависимые образы. Поэтому важно уметь аппаратно реализовывать многослойные НС.

Искусственные нейронные сети отличаются удивительными свойствами. Они не требуют детализированной разработки программного обеспечения и открывают возможности решения задач, для которых отсутствуют теоретические модели или эвристические правила, определяющие алгоритм решения. Такие сети обладают способностью адаптироваться к изменениям условий функционирования, в том числе к возникновению заранее непредусмотренных факторов. По своей природе НС являются системами с очень высоким уровнем параллелизма.

В нейрокомпьютерах используются принципы обработки информации, осуществляемые в реальных нейронных сетях. Эти принципиально новые вычислительные средства с нетрадиционной архитектурой позволяют выполнять высокопроизводительную обработку информационных массивов большой размерности. В отличие от традиционных КС, нейросетевые вычислители, аналогично нейронным сетям, дают возможность с большей скоростью обрабатывать информационные потоки дискретных и непрерывных сигналов, содержат простые вычислительные элементы и с высокой степенью надежности позволяют решать информационные задачи обработки данных, обеспечивая при этом режим самоперестройки вычислительной среды в зависимости от полученных решений.

Вообще говоря, под термином «нейрокомпьютер» в настоящее время подразумевается довольно широкий класс вычислителей. Это происходит по той простой причине, что формально нейрокомпьютером можно считать любую аппаратную реализацию нейросетевого алгоритма, от простой модели биологического нейрона до системы распознавания символов или движущихся целей. Нейрокомпьютеры не являются компьютерами в общепринятом смысле этого слова. В настоящее время технология еще не достигла того уровня развития, при котором можно было бы говорить о нейрокомпьютере общего назначения (который являлся бы одновременно искусственным интеллектом). Системы с фиксированными значениями весовых коэффициентов – вообще самые узкоспециализированные из нейросетевого семейства. Обучающиеся сети более адаптированы к разнообразию решаемых задач. Обучающиеся сети более гибки и способны к решению разнообразных задач. Таким образом, построение нейрокомпьютера – это каждый раз широчайшее поле для исследовательской деятельности в области аппаратной реализации практически всех элементов НС.

В начале 21 века, в отличие от 40-50-х годов прошлого столетия, существует объективная практическая потребность научиться создавать нейрокомпьютеры, т.е. необходимо аппаратно реализовать довольно много параллельно действующих нейронов, с миллионами фиксированных или параллельно адаптивно модифицируемых связей-синапсов, с несколькими полносвязными слоями нейронов.

В то же время физические возможности технологии интегральной электроники не безграничны. Геометрические размеры транзисторов больше нельзя физически уменьшать: при технологически достижимых размерах порядка 1 мкм и меньше проявляются физические явления, незаметные при больших размерах активных элементов – начинают сильно сказываться квантовые размерные эффекты. Транзисторы перестают работать как транзисторы.

Для аппаратной реализации НС необходим новый носитель информации. Таким новым носителем информации может быть свет, который позволит резко, на несколько порядков, повысить производительность вычислений.

Единственной технологией аппаратной реализации НС, способной в будущем прийти на смену оптике и оптоэлектронике, является нанотехнология, способная обеспечить не только физически предельно возможную степень интеграции субмолекулярных квантовых элементов с физически предельно возможным быстродействием, но и столь необходимую для аппаратной реализации НС трехмерную архитектуру.

Длительное время считалось, что нейрокомпьютеры эффективны для решения так называемых неформализуемых и плохо формализуемых задач, связанных с необходимостью включения в алгоритм решения задачи процесса обучения на реальном экспериментальном материале. В первую очередь к таким задачам относилась задача аппроксимации частного вида функций, принимающих дискретное множество значений, т.е. задача распознавания образов.

В настоящее время к этому классу задач добавляется класс задач, иногда не требующий обучения на экспериментальном материале, но хорошо представимый в нейросетевом логическом базисе. К ним относятся задачи с ярко выраженным естественным параллелизмом обработки сигналов, обработка изображений и др. Подтверждением точки зрения, что в будущем нейрокомпьютеры будут более эффективными, чем прочие архитектуры, может, в частности, служить резкое расширение в последние годы класса общематематических задач, решаемых в нейросетевом логическом базисе. К ним, кроме перечисленных выше, можно отнести задачи решения линейных и нелинейных алгебраических уравнений и неравенств большой размерности; систем нелинейных дифференциальных уравнений; уравнений в частных производных; задач оптимизации и других задач.


Сейчас читают про: