Статистика фотоотсчетов и квантовые эффекты

По классической электромагнитной теории напряженность электрического поля полагается детерминированной величиной. Теоретически существует гармоническая (монохроматическая) световая волна, характеризующаяся строго фиксированными амплитудой и частотой излучения. Реальным источником излучения подобным гармонической волне является излучение одномодового одночастотного лазера, работающего при накачке значительно выше порогового значения.

(1.1.49)

С точки зрения квантовой механики распределение (1.1.49) должно быть заменено на распределение числа фотонов в моде.

Как было впервые показано Глаубером классической монохроматической волне соответствует квантовомеханическое когерентное или Глауберово состояние. Вероятность обнаружить фотонов в моде в случае ее когерентного состояния определяется распределением Пуассона с параметром , равным среднему числу фотонов ():

(1.1.50)

С практической точки зрения, например, применительно к оптической связи, важно знать статистику фотоотсчетов, т.е. числа фотоэлектронов, возникающих при фотодетектировании света за некоторое время выборки . Пусть за время выборки на фотодетектор падает в среднем фотонов, находящихся в когерентном состоянии, а вероятность регистрации одного фотона определяется квантовым выходом люминесценции (). Тогда вероятность регистрации любых электронов из максимально возможного числа (), равного числу упавших фотонов, определяется биноминальным распределением Бернулли:

. (1.1.51)

Отсюда для произвольного состояния поля находим следующую связь между распределением фотонов и распределением фотоэлектронов (или, другими словами, фотоотсчетов):

. (1.1.52)

В случае 100% квантовой эффективности фотодетектора (т.е. при ) распределение Бернулли переходит в дельта функцию () и распределения электронов и фотонов совпадают. При < 1 биноминальное распределение (1.1.52) вносит дополнительную неопределенность и затрудняет решение обратной задачи – определение статистики фотонов по измеренной статистике фотоэлектронов. В общем случае при < 1 функциональная форма распределений фотонов и фотоэлектронов различны, но в двух частных случаях – когерентного и хаотического поля они совпадают.

В результате при среднем числе регистрируемых фотоэлектронов для распределения вероятности фотоэлектронов в когерентном и хаотическом состояниях получаем следующие выражения соответственно:

(1.1.53)

(1.1.54)

Хотя в общем случае связь между статистиками фотоэлектронов и фотонов довольно сложна, можно получить довольно простые выражения, связывающие их моменты и дисперсии:

, (1.1.55)

, (1.1.56)

. (1.1.57)

Таким образом, к обычному дробовому шуму фототока добавляются с весом «фотонные» шумы (что представляется естественным), но одновременно вычитается член (что для полуклассики неожиданно) [6]. Согласно квантовой оптике существуют такие специфические состояния поля, при которых возникает антигруппировка фотонов <.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: