Бактериальные цитокины

Обнаружено, что прокариотические микроорганизмы синтезируют вещества, похожие на гормоны позвоночных (включая стероиды и полипептидные гормоны, такие, как инсулин). Увеличивается количество данных, подчеркивающих важность химически опосредованных межклеточных взаимодействий в бактериальных культурах для таких событий, как споруляция, конъюгация, вирулентность и биолюминесценция. Таким образом, в настоящее время многие исследования в области микробиологии посвящены взаимодействиям между микроорганизмами, основанными на использовании бактериальных цитокинов.

Известно, что микроорганизмы способны гибко адаптироваться к изменяющимся условиям окружающей среды (в частности, к недостатку питательных компонентов). При этом некоторые из них обладают генетически закреплённой специфической организацией метаболизма, позволяющей существовать при очень низких концентрациях питательных веществ (олиготрофы). Клетки другой категории (копиотрофы) при истощении среды обитания способны включать специальные программы переживания неблагоприятных условий. Часть из них образуют специализированные структуры (споры и цисты), которые чрезвычайно устойчивы к различным стрессам, неспорулирующие же бактерии способны переживать неблагоприятные условия, оставаясь вегетативными клетками с пониженной метаболической активностью, т.е. переходя в особое VBNC (viable but nonculturable - жизнеспособные, но некультивируемые) состояние. Естественно, что некультивируемые бактерии остаются за рамками общепринятых методов исследований (высевы на плотные или жидкие среды не позволяют их обнаруживать). Например, возбудители таких опасных заболеваний, как холера и кампилобактериоз, склонны образовывать некультивируемые формы. При микроскопическом исследовании образцов, выделенных из окружающей среды (почва, речные и морские воды и т.д.) обнаружено множество клеток, которые, обладая метаболической активностью, не могут образовывать полноценную культуру (т.е. некультивируемые). В настоящее время известно всего несколько примеров превращения таких бактерий в нормальные культивируемые клетки. Концепция цитокин-зависимого роста микроорганизмов позволяет по-новому рассматривать проблему подбора сред для восстановления некультивируемых форм.

Некультивируемые формы патогенных бактерий обнаружены не только в окружающей среде, но и в тканях, органах человека и животных. Чаще всего они сильно отличаются морфологически и биохимически. Например, возбудитель туберкулёза в тканях образует нетипичные кокковидные формы. Возможно, такие клетки являются особыми переживающими формами, способными к активации и размножению. Существование таких покоящихся форм может объяснить периодически возникающие рецидивы болезни у, казалось бы, вылеченных больных. Показано, что клетки Mycobacterium tuberculosis могут переходить в нереплицируемое кокковидное состояние в микроаэрофильных условиях in vitro, которые часто возникают in vivo (например, в гранулемах). Кокковидные формы также обнаружены для Campylobacter jejuni и Helicobacter pylori. Предполагается, что они образуются в тканях в ответ на воздействие лекарств и, возможно, являются покоящимися клетками, устойчивыми к действию антибиотиков. Однако данные о культивировании таких форм весьма противоречивы. Возможно, такие бактерии могут быть активированы какими-то специфическими ростовыми факторами, роль которых, вероятно, исполняют цитокины хозяина. Например, рост туберкулёзных бацилл внутри моноцитов существенно стимулировался трансформирующим ростовым фактором (TGF-1), тогда как рост клеток М.tuberculosis и M.avium внутри макрофагов значительно ускорялся в присутствии эпидермадьного ростового фактора. Очевидно, цитокинные факторы хозяина могут играть важную роль и в активации покоящихся бактерий, и в размножении активных возбудителей. Снижение уровня инсулина в крови больных сахарным диабетом приводит к значительному размножению клеток Pseudomonas pseudomallei, являющихся возбудителями мелиоидоза, а трансферрин имеет большое значение для роста и переживания внутри мышиных макрофагов клеток Francisella tularensis.

Возможно, что специфические бактериальные цитокины также играют существенную роль в образовании покоящихся форм и их восстановлении в активные делящиеся клетки. Тогда, принимая во внимание проблемы возникновения устойчивости к антибиотикам, сложно переоценить важность отыскания автокринных ростовых факторов, необходимых для роста патогенных бактерий, и, следовательно, являющихся мишенью для воздействия принципиально новых антибиотиков, нетоксичных для больного.

Применение специфических бактериальных цитокинов также может существенно улучшить ситуацию с выращиванием некультивируемых бактерий в средах, не вполне подходящих для их размножения. Например, обычно не растущие на минимальной сукцинатной среде микрококки начинают нормально в ней размножаться в присутствии автокринного фактора Rpf (resuscitation-promoting factor), а отмытые клетки Mycobacterium smegmatis, которые растут на минимальной среде только при добавлении Rpf, выделенного из Micrococcus luteus, можно рассматривать в качестве модели популяции «голодающих» бактерий в почве, вероятно, требующей для начала деления присутствия специфического цитокина. Применение специфических бактериальных цитокинов также может существенно улучшить ситуацию с выращиванием некультивируемых бактерий в средах, не вполне подходящих для их размножения. Гены, имеющие сходство с геном, кодирующим белок Rpf у М.luteus, широко распространены среди грамположительных бактерий с высоким содержанием G+C, к которым относятся стрептомицеты, коринебактерии и микобактерии. Этот факт открывает новые возможности для предупреждения и лечения болезней, вызванных микробными агентами, а также позволяет по-иному взглянуть на сложный комплекс межвидовых бактериальных взаимодействий в природных местах обитания микроорганизмов.


Последнее обновление: 20.02.2004

В.Д. Грузина. Коммуникативные сигналы бактерий

ЛИТЕРАТУРА

Олескин А.В., Ботвинко И.В., Цавкелова Е.А. Колониальная организация и межклеточная коммуникация у микроорганизмов. Микробиология 2000; 69: 3: 309-327.

Fuqua W.С., Winans S., Greenberg Е. Quorum sensing in bacteria: the Lux R-Lux I family of cell density-responsive transcriptional regulators. J Bacteriol 1994; 176: 2: 269-275.

Meighen E. Molecular biology of bacterial bioluminescence. Microbiol Rev 1991; 55:1:123-142.

Winans S.С., Bassler В.L. Mob psychology. J Bacteriol 2002; 184: 4: 873-883.

Writh R., Muscholl A., Wanner G. The role of pheromones in bacterial interactions. Trends Microbiol 1996; 4: 3: 96-103.

Хохлов А.С. Низкомолекулярные микробные ауторегуляторы. М.: 1988;270.

Waldburger С., Gonzalez D., Chambliss G.H. Characterization of a new sporulation factor in Bacillus subtilis. J Bacteriol 1993; 175: 6321-6327.

Pestova E., Havarstein L., Morrison D. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromones and a two-component regulatory systems. Mol Microbiol 1996; 21:4: 853-862.

Alloing G., Martin В., Granadel G., Claveris J. Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum-sensing by the oligopeptide permease. Ibid 1998; 9:1: 75-83.

Прозоров А.А. Феромоны компетентности у бактерий. Микробиология 2001; 70: 1:5-14.

Salmond G., Bycroft В., Stewart С., Williams P. The bacterial «enigma»: cracking the code of cell-cell communication. Mol Microbiol 1995; 16:4:615-624.

Greenberg E., Winans S., Fuqua C. Quorum-sensing by bacteria. Ann Rev Microbiol 1996; 50: 727-751.

Otto M., Sussmuth R., Vuong C. et al. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett. 1999; 450: 257-262.

Dong Y., Xu J., Li X., Zhang L. AiiA, an enzyme that inactivates the acyl-homoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovoru. Proc Natl Acad Sci 2000; 97:7: 3526-3531.

Byers J., Lucas C., Salmond G., Welch М. Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 2002; 184:4: 1163-1171.

Calfee М., Coleman J., Pesci E. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci 2001; 98: 20:11633-11637.

Nakayama J., Takanami Y., Horii T. et al. Molecular mechanism of pep-tide-specific pheromone signaling in Enterococcus faecalis: functions of pheromone receptor TraA and pheromone-binding protein TraC encoded by plasmid pPDI. J Bacteriol 1998: 180: 3: 449-456.

Mylonakis E., Engelbert М., Qin X. et al. The Enterococcus faecalis fsrB gene, a key component of the fsr quorum-sensing system, is associated with virulence in the rabbit endophthalmitis model. Infect Immun 2002; 70: 8: 4678-4681.

Sifri C., Mylonakis E., Singh V. et al. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locust in Caenorhabditis elegans and mice. Ibid 2002; 70:10: 5647-5650.

Matson М., Armitage J., Hoch J., Macnab R. Bacterial locomotion and signal transduction. J Bacteriol 1998; 180: 5: 1009-1022.

Onaka H., Horinouchi S. DNA-binding activity of the A-factor receptor protein and its recognition DNA sequences. Mol Microbiol 1997; 24: 991-1000.

Onaka H., Ando N., Nihira Т., Yamada Y. et al. Cloning and characterisation of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 1995; 177: 21: 6083-6092.

Ohnishi Y., Kameyama S., Onaka H., Horinouchi S. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 1999; 34: 102-111.

Yamazaki H., Ohnishi Y., Horinouchi S. An A-factor-dependent extracytoplasmatic function sigma factor (OAdsA) that is essential for morphological development in Streptomyces griseus. J Bacteriol 2000; 182:16:4596- 4605.

Kato J., Suzuki A., Yamazaki H. et al. Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. Ibid 2002; 184: 21: 6016-6025.

Onaka H., Nikagawa Т., Horinouchi S. Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol. Microbiol. 1998; 28:4: 743-753.

Revenchon S., Bouillant М., Salmond G., Nasser W. Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemii. Mol Microbiol 1998; 29: 1407-1418.

Chatterjee A., Cui Y., Chatterjee A.K. RsmA and the quorum-sensing signal, N-[3-oxohexanoyl]-L-homoserine lactone, control the levels of rsmB RNA in Erwinia carotovora subsp. carotovora by affecting its stability. J Bacteriol 2002; 184:15: 4089-4095.

Kohler Т., Van Delden C., Curty L. et al. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. Ibid 2001; 183: 18: 5213-5222.

Gallagher L., McKnight S., Kuznetsova М. el al. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. Ibid 2002; 184:23:6472-6480.

Parsek М., Greenberg P. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci 2000; 97: 16: 8789-8793.

Conway В.А., Уепи V., Speert D. Biofilm formation and acyl-homoserine lactone production in the Burkholderia cepacia complex. J Bacteriol 2002; 184:20:5678-5685.

Kolenbrander P., Andersen R., Blehert D. et al. Communication among oral bacteria. Microb. Molecular Biology Rev 2002; 66: 3: 486-505.

Miller M., Bassler B. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55: 165-199.

Frias J., Olle E., Alsina M. Periodontal pathogens produce quorum sensing signal molecules. Infect Immun 2001; 69: 3431-3434.

McNab R., Ford S., EI-Sabaeny A. et al. LuxS-based signaling in Streptococcus gordonii: Autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 2003; 185: 1:274-284.

Bassler В., Wright M., Silverman M. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 1994; 13: 273-286.

Ji G., Beavis R., Novick R. Bacterial interference caused by autoinducing peptide variants. Science 1997; 276: 2027-2030.

Lee S., Park S., Lee J., et al. Genes encoding the N-acyi homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 2002; 68: 8: 3919-3924.

Leadbetter J., Greenberg E. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 2000; 182:6921-6926.

Hoang Т., Schweizer H. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (Fabl): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. Ibid 1999; 181:. 5489-5497.

Pearson J., Delden C., Iglewski B. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 1999; 181: 1203-1210.

Manefield M., Welch M., Givskov G. et al. Halogenated furanoses from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopatoge Erwinia carotovora. FEMS Microbiol Lett 2001; 205: 131-138.

Dong Y., Wang L., Xu J. et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001; 411:813-817.

Романова Ю.М., Гинцбург А.Л. Цитокины - возможные активаторы роста патогенных бактерий. Вести РАМН 2000; 1: 13-17.

Barcina I., Lebaron P., Vives-Rego J. Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiol Ecol 1997; 23:1-9.

Heim S., Lleo M., Bonato B. et al. The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 2002; 184:23: 6739-6745.

Xu H., Roberts N., Singleton F. el al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 1982; 8: 313-323.

Kell D., Kaprelyants A., Grafen A. Pheromones, social-behavior and the functions of secondary metabolism in bacteria. Trends In Ecology & Evolution 1995; 10: 126-129.

Domingue G., Woody H. Bacterial persistence and expression of disease. Clin Microbiol Rev 1997; 10: 320-328.

Khomenko A. The variability of Mycobacterium tuberculosis in patients with cavitary pulmonary tuberculosis in the course of chemotherapy. Tubercle Lung Disease 1987; 68: 243-253.

Gangadharam P. Mycobacterial dormancy. Tub Lung Dis 1995; 76: 477-479.

Wayne L. Dormancy of Mycobacterium tuberculosis and latency of disease. European J Clin Microbiol Infect Dis 1994; 13: 908-914.

Wayne L., Hayes L. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through 2 stages of nonreplicating persistence. Infect Immun 1996; 64: 2062-2069.

Beumer R., Devries J., Rombouts F. Campylobacter jejuni nonculturable coccoid cells. Intern J Food Microbiol 1992; 15: 153-163.

Kusters J., Gerrits M., Van Strijp J. el at. Coccoid forms of Helicobacter pylori are the morphologic manifestation of cell death. Infect Immun 1997; 65: 3672-3679.

Cellini L., Hui P., Leung K. el at. Coccoid Helicobacter pylori not culturable in vitro reverts in mice. Microbiol Immun 1994; 38: 843-850.

Hirsch С., Yoneda T., Averill L. et al. Enhancement of intracellular growth of Mycobacterium tuberculosis in human monocytes by transforming growth-factor-b-l. J. Infect Dis 1994; 170: 1229-1237.

Bermudez. L., Pelrofsky M. Regulation of the expression of Mycobacterium avium complex proteins differs according to the environment within host cells. Immunol Cell Biol 1997; 75: 35-40.

Woods D., Jones A., Hill P. Interaction of insulin with Pseudomonas pseudomallei. Infect Immun 1993; 61: 4045-4050.

FortierA., Leiby D., Narayanan R. et al. Growth of Francisella tularensis LVS in macrophages - the acidic intracellular compartment provides essential iron required for growth. Ibid 1995; 65:1478-1483.

Duncan S., Glover L., Killham K., Prosser J. Luminescence-based detection of activity of starved and viable but nonculturable bacteria. Appl Environ Microbiol 1994; 60: 1308-1316.

Young D., Duncan K. Prospects for new interventions in the treatment and prevention of mycobacterial disease. Ann. Rev. Microbiol. 1995; 49: 641-673.

Mukamolova G., Kapreilyants A., Young D. et al. A bacterial cytokine. Proc Nat! Acad Sci USA. 1998; 95: 8916-8921.

Шлеева M.О., Мукамолова Г.В., Телков M.В. и др. Образование «некультивируемых» клеток Mycobacterium tuberculosis и их оживление. Микробиология 2003; 72: 76-83.

2004 © ANTIBIOTIC.ru
https://www.antibiotic.ru/


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: