Общая характеристика молний

Молния представляет собой явление электрического разряда в атмосфере. Генератором молний являются грозовые (кучево-дождевые) облака, в которых происходит разделение положительных и отрицательных электрических зарядов. Молнии могут также возникать в снежных и песчаных бурях, при извержении вулканов, ядерных взрывах.

Молнии происходят между грозовым облаком и землей, между облаками или различными областями одного и того же облака. Наблюдателю они представляются в виде ярко светящихся зигзагообразных линий с многочисленными разветвлениями. Этот тип молний называется линейной молнией. Линейные молнии возникают часто, наиболее изучены, сопровождаются электромагнитными, тепловыми, газодинамическими, электродинамическими, звуковыми и световыми воздействиями на находящиеся в зоне их влияния объекты.

Значительно реже наблюдается шаровая молния. В большинстве случаев она появляется одновременно с линейной молнией недалеко от места удара последней и выглядит как огненный шар. Имеются также сведения, что возникновение шаровой молнии наблюдалось при мощных коротких замыканиях в электроустановках.

Шаровая молния имеет диаметр, в основном, 10–20 см. Цвет может быть красный, оранжевый, желтый или белый. Свечение не очень яркое, но шаровую молнию можно четко различать при дневном свете. Шаровые молнии обычно перемещаются горизонтально со скоростью нескольких метров в секунду, а также в течение некоторого времени могут оставаться неподвижными или даже передвигаться по вертикали. Иногда шаровые молнии издают шипение. Отмечается сопровождающий шаровую молнию характерный запах, напоминающий горящую серу или озон.

Время жизни шаровых молний составляет обычно несколько секунд, но может иногда быть и больше минуты. Исчезновение шаровых молний происходит быстро и сопровождается сильным треском. Только в редких случаях она исчезает бесшумно. В месте взрыва шаровой молнии происходят обрывы проводов, оплавления поверхностей, возникают отверстия и т.п. Удовлетворительного объяснения шаровой молнии и причин ее возникновения пока не найдено.

Чрезвычайно редким явлением можно считать так называемую чёточную молнию. Внешне она выглядит светящейся пунктирной линией: канал разряда между облаками и землей распадается на светящиеся элементы («четки») длиной до нескольких десятков метров, которые разделяются темными участками. «Четки» существуют значительно продолжительнее, чем канал линейной молнии. Появление чёточной молнии иногда связывается со зрительными эффектами (инструментальные наблюдения отсутствуют), в частности, продолжительное существование четок объясняется инерцией зрения, а не свойством канала разряда. В других случаях для объяснения четок привлекается пинч-эффект или термодинамические свойства канала молнии с радиусом, модулированным по высоте канала.

Линейные молнии изредка наблюдаются при отсутствии грозовых облаков и даже при совершенно ясном небе. Обычно в этих условиях отмечаются поражения молнией летательных аппаратов, например, американской системы «Аполлон-11» во время старта на высотах примерно 2 и 4 км, привязного аэростата на высоте около 1 км и др. Следует также иметь в виду возможность грозовых разрядов из облака в направлении верхних слоев атмосферы.

  Рис. 7.1. Схема равновесного атмосферного электрического поля Земли
Электрический заряд земли отрицательный и составляет -5,4×105 Кл (рис. 7.1). Напряженность электрического поля между землей и положительно заряженной ионосферой, расположенной на высоте ориентировочно 80 км, так называемое «поле ясной погоды», находится в пределах E = 100–200 В/м. Средняя плотность тока на землю в ясную погоду равна j = 2,6.10-12 А/м2. Это дает общий ток на поверх-ность земли I» 1300 A. Таким образом, гигантский конденсатор земля–ионосфера должен был бы разряжаться, однако этого не происходит.

По данным спутниковых наблюдений на земле одновременно существует примерно 3000 грозовых очагов и каждую секунду поверхность ее поражается 100 ударами молнии. Исследования, проведенные в разных частях земного шара, показывают, что 80–90 % молний переносят на землю отрицательный заряд. Если принять, что за один разряд на землю переносится в среднем 20 Кл, и учесть, что 15 % молний переносят положительный заряд, который должен быть скомпенсирован, то получится средний ток, создаваемый молниями, 1400 А. Как видим, роль грозовой деятельности в поддержании отрицательного заряда земли, по-видимому, достаточно велика.

Поскольку наземные объекты поражаются в подавляющем большинстве линейными молниями между облаками и землей, в последующем основное внимание будет уделяться именно им.

Электризация частиц и разделение зарядов в грозовых облаках

Грозовые облака (кучево-дождевые) простираются по высоте до 15 км, в то время как их основание находится на высоте 0,3–3,5 км. Грозовое облако представляет собой, как бы, громадную «вытяжную трубу», в которой воздуху по мере его подъема все время сообщается дополнительное тепло, и в зоне облака он всегда теплее, чем вне его. Сначала происходит конденсация водяных паров, при которой выделяется тепло, затем происходит замерзание капель, также сопровождающееся нагревом окружающего воздуха.

В верхней своей части грозовое облако может состоять из снежинок, кристаллов льда, ледяной крупы, градин. Нижняя часть, находящаяся при температуре выше 0°С, состоит обычно из крупных капель воды и поэтому выглядит очень темной.

Имеется множество теорий электризации капель воды и кристаллов льда в грозовых облаках, в большинстве своем нашедших подтверждение в лабораторных исследованиях. В грозовом облаке могут действовать несколько механизмов электризации в зависимости от стадии развития облака и агрегатного состояния воды в нем.

  Рис. 7.2 Структура грозовой ячейки облака
На рис. 7.2 показана усредненная модель грозовой ячейки облака. Уровни расположения зарядов близки к наблюдаемым, а значения зарядов соответствуют средним значениям напряженности электрического поля, измеряемым у поверхности земли. Сравнительно небольшой положительный заряд в нижней части облака часто выпадает с дождем. Предполагается также, что он может способствовать развитию разряда из отрицательно заряженной области.

Грозовое облако по структуре основных зарядов представляет собой диполь. Средний электрический момент, нейтрализуемый при разряде, составляет около 100 Кл×км, а максимальный – 500 Кл×км. Частота разрядов при умеренных грозах – около 1 в мин., а при интенсивных может достигать 5–10 в 1 мин. Средняя плотность зарядов в облаке 3×10-9 – 3×10-8 Кл/м3, а скорость их накопления 3×10-10 – 3×10-8 Кл/(м3×с). Средняя продолжительность электрической активности отдельного грозового облака 30–40 мин.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: