Синтетические волокна

К концу XIX столетия значительно увеличилась потребность в текстильных материалах, которые можно было бы использовать не только как ширпотреб, по и в различных отраслях промышленности. Качество натуральных волокон и объем их производства не удовлетворяли возросшим требованиям развивающейся промышленности. Поэтому уже на рубеже XIX и XX веков возникло производство искусственных волокон (нитрошелка, вискозного и медноаммиачного), а позднее быстрыми темпами начало развиваться производство синтетических волокон.

Синтетические волокна не гниют, их не поедает моль, они стойки к действию агрессивных химических сред, обладают большей прочностью и более высокими электроизоляционными свойствами, чем натуральные. Во многих отраслях промышленности они стали незаменимы. Кроме того, производство синтетических волокон более экономично, чем натуральных.

Все волокна, в настоящее время выпускаемые промышленностью, можно классифицировать как натуральные и химические. Натуральные волокна могут быть органические и неорганические (асбестовое волокно). Органические волокна могут быть растительного происхождения (хлопок, лен, пенька и др.) и животного происхождения (шерсть, натуральный шелк).

Химические волокна — это волокна, полученные химическим путем. Они подразделяются на искусственные, которые получают химической обработкой природных материалов, например целлюлозы (вискозное, медноаммиачное, ацетатное), и синтетические, которые производят из синтетических полимеров. К синтетическим относятся полиамидные волокна (капрон, анид), полиэфирные волокна (лавсан), карбоцепные волокна (полиакрилонитрильные, полипропиленовые).

Строение волокон характеризуется упорядоченным, ориентированным вдоль оси волокна, расположением линейных молекул. При таком расположении молекул между ними в волокне возникают большие си-
лы притяжения, что обеспечивает высокую прочность его. Чем больше молекулы, тем больше силы, удерживающие их друг возле друга. Чтобы молекулы могли перемещаться, необходимо ослабить межмолекулярное взаимодействие. Это достигается либо растворением полимера, либо плавлением его, либо переводом в пластическое состояние нагреванием. В связи с этим существует два способа формования волокон из полимеров — прядение из раствора и прядение из расплава (или из пластического состояния).

При прядении из раствора полимер растворяют в растворителе и полученный вязкий раствор продавливают через фильеры; образующиеся тонкие нити коагулируют в осадительной ванне и превращаются в тонкие волокна.

При прядении из расплава полимер нагреванием переводят в плавкое состояние; полученный расплав продавливается через фильеры; образующиеся нити затвердевают на воздухе или в атмосфере инертного газа. По-
лученный тем или иным способом прядения пучок волокон образует некрученую нить, которая проходит через направляющие ролики и подвергается вытягиванию для увеличения прочности волокна. Затем волокно подвергают специальной обработке для придания ему определенных физико-механических свойств, улучшают его качество (кручение, термофиксация и т. д.).

Волокно капрон. Капрон является наиболее распространенным из всех видов синтетических волокон. Его получают прядением из расплава поликапролактама. Поликапролактам получают полимеризацией капролактама при 250—260°С. Реакция идет ступенчато. Вначале при взаимодействии капролактама с водой образуется аминокапроновая кислота

Аминокапроновая кислота соединяется с другой молекулой капролактама, образуя димер. Далее димер взаимодействует с новой молекулой капролактама, образуя тример, и т. д. до образования поликапролактама.

В качестве стабилизатора молекулярной массы полимера применяют уксуснокислый бутиламин. Для предотвращения окисления полимера процесс полимеризации ведут в атмосфере азота. Полученный полиамид (капрон) перерабатывают в крошку, которая затем поступает в плавильные головки, где плавится, затем продавливается через фильеры.

Полученные тонкие капроновые нити обдуваются воздухом и застывают. Затем тонкие нити скручивают в одну нить и вытягивают.

В химическом отношении капроновые волокла нестойки. Под действием кислот и щелочей, даже малой концентрации, они растворяются. Плотность их 140 кг/м3. Температура плавления 208—215°С, при 300°С волокно начинает разлагаться с выделением различных продуктов разложения. Температура воспламенения 395°С, теплота сгорания 31 206 кДж/кг. Волокно легко воспламеняется, в расплавленном состоянии интенсивно горит с выделением большого количества дыма, в котором содержится много продуктов разложения. К тепловому самовозгоранию волокно не склонно.

Капроновое штапельное волокно используют в смеси с шерстью для изготовления различных шерстяных изделий, а из чистого капронового штапельного волокна изготовляют искусственные меха.

Основным потребителем технических капроновых нитей является шинная промышленность. Капроновый корд очень прочен, поэтому он нашел применение в производстве авиашин и шин для большегрузных автомобилей. Кроме того, капроновую техническую нить используют для изготовления тяжелых транспортерных лент, приводных ремней, выкидных рукавов, спасательных веревок, рыболовных снастей и т. д.

Волокно лавсан. Процесс производства синтетического волокна лавсан состоит из двух стадий: получения полиэтилентерефталата и получения собственно волокна. Синтез полиэтилентерефталата осуществляется в две стадии.

1. Получение дигликолевого эфира терефталевой кислоты (переэтерификация диметилтерефталата этиленгликолем)

2. Получение полиэтилентерефталата поликонденсацией дигликолевого эфира терсефталевой кислоты

Полученный полимер выдавливают в щелевую или круглую фильеру в виде широкой лепты или прутка, охлаждаемого водой. Затем ленты или прутки измельчают в гранулы, которые поступают в плавильные головки,
где при 270—275°С плавятся и продавливаются через фильеры для получения топких нитей. Последующая обработка нитей заключается в вытягивании их на крутильно-вытяжных машинах при 90—160°С и скручивании. После этого нити подвергают термофиксации острым паром при 115—145°С.

Лавсан по своим свойствам близок к натуральной шерсти. Он является высокопрочным; изделия из него не сминаются. Из всех видов синтетических волокон лавсан наиболее термически стоек. Только при 180 °С оно теряет 50% первоначальной прочности. Лавсановое волокно может работать в диапазоне температур от —70 до 175°С. Изделия из лавсана имеют высокую светостойкость. Лавсановое волокно можно применять как хороший диэлектрик; удельное объемное сопротивление его 1·1О19 Ом-см, а электрическая прочность составляет 180 кВ/мм.

Лавсан относится к химически устойчивым волокнам. Он стоек к действию органических и минеральных кислот. В пламени волокно плавится и воспламеняется. Температура воспламенения 390 °С. В расплавленном состоянии интенсивно горит ярким, сильно коптящим пламенем. Теплота сгорания 22638 кДж/кг. Температура самовоспламенения его 440°С. К тепловому самовозгоранию волокно не склонно.

Лавсановое волокно применяют для изготовления гибких шлангов, используемых для перекачки нефтепродуктов, и пожарных рукавов, в производстве корда, транспортерных лент, приводных ремней. В большом количестве его используют как заменитель шерстяного волокна и в смеси с ним в текстильной промышленности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: