Работа комплекта термопара-милливольтметр. Погрешности, возникающие в процессе измерений. Устройство компенсационной коробки

Комплект для измерения температуры состоит из термоэлектродов 1 и 2, образующих рабочий конец 3, которые изолированы друг от друга фарфоровыми трубками 4 и заключены в защитный чехол 5. В головке 6 оба термоэлектрода посредством зажимов, укрепленных на колодке 7, соединены с жилами 8 и 9 компенсационного провода, к которому посредством медных соединительных проводов 10 подключен в точках 11 и 12, являющихся свободными концами термопары, измерительный прибор 13. Постоянная температура свободных концов поддерживается термостатом 14.

Принцип работы милливольтметра заключается в использовании взаимодействия магнитного поля неподвижного магнита и постоянного тока, протекающего через обмотку подвижной рамки. Рамка Rр включается в цепь ТЭП с помощью компенсационных А 1 и В 1, и медных С проводов. Сила тока, протекающего в цепи, зависит от величины ТЭДС Е АВ(t 2, t0) и сопротивления измерительной цепи. При протекании тока через рамку, окруженную полем постоянного магнита, возникает магнитоэлектрический момент М (Н·м), поворачивающий рамку и равный: М = 2r l·n·B·I, При перемещении рамка одновременно закручивает спиральные пружины, которые создают противодействующий упругий момент. Вращение рамки будет продолжаться до тех пор, пока магнитоэлектрический момент не уравновесится противодействующим упругим моментом М = Мп

Погрешности:

1) сопротивления внешней цепи R ВН в зависимости от непостоянной температуры в цехах и на поверхностях металлургического оборудования, вдоль которые прокладываются соединительные провода;

2) сопротивления прибора R Г вследствие значительного изменения температуры помещения, в котором установлен прибор;

3) температуры t 0 свободных концов ТП;

4) механических характеристик измерительного механизма (упругих характеристик пружин, моментов трения в керновых подпятниках и т. п.);

5) наличия внешних магнитных полей.

Для исключения влияния отклонения температуры t 0 свободных концов от градуировочной вместо термостатов широко применяются компенсационные коробки КТ для автоматической компенсации изменения ТЭДС термопары. На рис. 3.4. представлена схема включения устройства КТ в измерительную цепь, состоящую из милливольтметра М и термометра АВ. Компенсационные А 1, В 1 и соединительные С провода присоединены к клеммам КТ. Таким образом, сопротивления R 1, R 2, R 3, R 4 образующие равноплечный мост, имеют такую же температуру t 0, которую имеют свободные концы. Сопротивления R 1, R 2 и R 4, выполнены из манганина, R 3– из меди. К вершинам диагонали ab подается постоянное напряжение, например от источника стабилизированного питания (на рисунке не показан). Сопротивления подобраны таким образом, что при t 0=0 °С напряжение на вершинах с и d равно нулю, т. е. на милливольтметр поступает сигнал ТП, соответствующий стандартной градуировке. При увеличении температуры t 0 (t '0 > t 0) возрастает сопротивление R 3, что приводит к нарушению равно-весия моста и появлению в точках c и d напряжения, компенсирующего уменьшение ТЭДС термометра, ЕАВ (t′ 0, t 0) = Ucd. Точность, с которой устройство КТ воспроизводит соответствующую термоэлектрическую характеристику при изменении температуры свободных концов в пределах до t 0 = 50 °С, составляет ±3 °С для ТП типа ТПП, ТХА и ТХК.

  1. Компенсационный метод измерения температуры. Устройство и работа автоматических потенциометров.
  2. Компенсационный метод измерения температуры. Работа и устройство потенциометров с ручной наводкой.

Измерение термо-ЭДС компенсационным путем

Измерение термо-ЭДС термопары прямым путем, по силе тока в цепи постоянного сопротивления, с помощью милливольтметра, можно осуществить сравнительно просто. Однако этот метод обладает рядом недостатков, создающих дополнительные погрешности, что в большинстве случаев не позволяет получить высокой точности измерения.

В измерительной технике кроме прямых методов измерения известны компенсационные метода или методы противопоставления (сравнения) неизвестной величины величине известной. Компенсационные методы позволяют провести измерения более точно, хотя и не всегда так просто, как прямое измерение.

Основное преимущество компенсационного измерения термо-ЭДС, по сравнению с прямым, с помощью милливольтметра, состоит в том, что в момент измерения ток в цепи термопары равен 0. Это означает, что величина сопротивления внешней цепи не имеет значения: никакой подгонки сопротивления внешней цепи делать не надо и беспокоиться о влиянии температуры окружающей среды на внешнюю цепь нет необходимости.

  1. Классификация термометров сопротивления, физическая сущность работы, достоинства и недостатки. Вторичные приборы.

Термометр сопротивления (Терморезистор) — датчик для измерения температуры, сопротивление чувствительного элемента которого зависит от температуры. Может быть выполнен из металлического или полупроводникового материала. В последнем случае называется термистором.

Преимущества термометров сопротивления

Высокая точность измерений (обычно лучше ±1 °C), может доходить до 0,001 °C.

Возможноcть исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3-х или 4-х проводной схемы измерений

Практически линейная характеристика

Недостатки термометров сопротивления

Малый диапазон измерений (по сравнению с термопарами)

Не могут измерять высокую температуру (по сравнению с термопарами))

Металлический термометр сопротивления

Представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Наиболее распространенный тип термометров сопротивления – платиновые термометры. Это объясняется тем, что платина имеет высокий температурный коэффициент сопротивления и высокую стойкость к окислению. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом не менее 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Действующий стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ Р 8.625-2006 (Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте впервые отказались от нормирования конкретных номинальных сопротивлений. Сопротивление изготовленного термометра может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает погрешность не лучше 0,1 °С (класс АА при 0 °С). Термометры сопротивления на основе напыленной на подложку пленки отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов составляет 660 °С (класс С), для пленочных 600 °С (класс С).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: