Условия прочности и жесткости при кручении вала

Напряжения в поперечном сечении

Опыты показывают, что если на поверхности бруса круглого сечения нанести прямоугольную сетку, а на торцевой поверхности нанести радиальные

B
B1
B
B1
j
g
Рис. 5.4
r
dA
t
 
T
x
dx
линии (рис. 5.4), то после деформации кручения окажется, что:

а)все образующие поворачиваются на один и тот же угол g, а прямоугольники, нанесенные на поверхности, превращаются в параллелограммы;

б) торцевые сечения остаются круглыми, плоскими, расстояния между ними не меняются;

в) каждое сечение поворачивается относительно другого на некоторыйугол j, называемый углом закручивания;

г) радиальные линии на торцевой поверхности остаются прямыми.

На основании этих наблюдений можно заключить, что может быть принята гипотеза Бернулли (гипотеза плоских сечений), а в вале возникают условия чистого сдвига, в поперечных сечениях действуют только касательные напряжения, а нормальные напряжения равны нулю.

Рассмотрим поперечное сечение вала, расположенное на некотором расстоянии х от торцевого сечения, где Мк = T (рис. 5.4). На элементарной площадке будет действовать элементарная сила t × , момент относительно оси вала, создаваемый этой силой равен (t × r. Крутящий момент Мк, в сечении равен

(5.1)

Для того чтобы проинтегрировать это выражение необходимо знать закон распределения напряжений в сечении. Выделим из вала элементарное кольцо длиной и толщиной dr (рис. 5.5).

C
r
dr
B
B1
O
dj
g
dx
Рис. 5.5
tmax
 

Правый торец элемента повернется относительно левого на угол dj, образующая СВ повернется на угол g и займет положение СВ 1. Угол g - относительный сдвиг. С одной стороны из треугольника ОВВ 1 найдем:

.

С другой стороны из треугольника СВВ 1 получим:.

Приравнивая правые части полученных выражений, имеем:

.

На основании закона Гука при сдвиге:

. (5.2)

Подставив выражение (5.2) в (5.1), получим:

.

Откуда

. (5.3)

Подставим значение в выражение (5.2) получим:

. (5.4)

Таким образом, касательные напряжения при кручении прямо пропорциональны расстоянию от центра тяжести сечения до рассматриваемой точки и одинаковы в точках, одинаково удаленных от центра тяжести сечения (рис. 5.5). При r = 0 получим t = 0.

Наибольшие напряжения возникают в точках контура сечения при r = R:

.

Величина отношения полярного момента инерции к радиусу вала называется моментом сопротивления сечения при кручении или полярным моментом сопротивления

.

Для сплошного круглого сечения

.

Для кольцевого сечения

,

где.

Тогда максимальные касательные напряжения равны

. (5.5)

Условие прочности при кручении с учетом принятых обозначений формулируется следующим образом: максимальные касательные напряжения, возникающие в опасном сечении вала, не должны превышать допускаемых напряжений и записывается в виде

. (5.6)

Из условия прочности можно определить диаметр вала:

- сплошного сечения

,

- кольцевого сечения

.

Как следует из закона парности касательных напряжений, одновременно с касательными напряжениями, действующими в плоскости поперечного сечения вала, имеют место касательные напряжения в продольных плоскостях. Они равны по величине парным напряжениям, но имеют противоположный знак.

Таким образом, все элементы бруса при кручении находятся в состоянии чистого сдвига. Так как чистый сдвиг является частным случаем плоского напряженного состояния, при котором s1 = t, s2 = 0, s3 = -t, то при повороте граней элемента на 450 в новых площадках обнаруживаются только нормальные напряжения, равные по величине t (рис. 5.6).

Рис. 5.6
t
t
s1
s1
s3
s3
а)
б)
Рис. 5.7
в)

Рассмотрим возможные виды разрушения валов, изготовленных из различных материалов при кручении. Валы из пластичных материалов чаще всего разрушаются по сечению, перпендикулярному к оси вала, под действием касательных напряжений, действующих в этом сечении (рис. 5.7, а). Валы из хрупких материалов, разрушаются по винтовой поверхности наклоненной к оси вала под углом 450, т.е. по направлению действия максимальных растягивающих напряжений (рис. 5.7, б). У деревянных валов первые трещины возникают по образующим цилиндра, так как древесина плохо сопротивляется действию касательных напряжений, направленных вдоль волокон (рис. 5.7, в).

Таким образом, характер разрушения зависит от способности материала вала сопротивляться воздействию нормальных и касательных напряжений. В соответствии с этим, допускаемые касательные напряжения принимаются равными - для хрупких материалов и - для пластичных материалов.

Анализируя эпюру касательных напряжений (рис. 5.4) можно отметить, что наибольшие напряжения возникают на поверхности вала, в центральной части они значительно меньше и на продольной оси равны нулю. Следовательно, в сплошном валу материал, находящийся в центральной части, в значительной степени недогружен, его вклад в прочность вала мал. Поэтому рациональным для валов считается кольцевое сечение.

Из выражения (5.3) следует, что

. (5.7)

Интегрируя (5.7) по длине вала, получим:

.

Если крутящий момент М ки жесткость вала GJ pпо всей длине постоянны, то

, (5.8)

где GJ p - жесткость вала при кручении.

Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания

.

Для обеспечения требуемой жесткости вала необходимо, чтобы наибольший относительный угол закручивания не превосходил допускаемого:

(5.9)

Эта формула выражает условие жесткости вала при кручении. Обычно принимается [q] = 0,50 на 1 м длины вала.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: