Напряжение при чистом изгибе. Рассмотрим наиболее простой случай изгиба, называемый чис­тым изгибом

Рассмотрим наиболее простой случай изгиба, называемый чис­тым изгибом. Как было отмечено выше, под чистым изгибом понимается такой вид сопротивления, при котором в поперечных сечениях бруса возникают только изгибающие моменты, а попе­речные силы равны нулю. Процесс формирования деформаций при чистом изгибе может рассматриваться как результат поворота плоских поперечных сече­ний друг относительно друга.

Определим нормальные напряжения, возникающие при чистом изгибе балки, находящейся под действием моментов Му. В произвольной точке балки (рис. 6.5, т. А) в общем случае могут возникать нормальные напряжения как вдоль продольной оси σх, так и вдоль поперечных осей σy, σz.

a
в
c
d
f
e
z
r
в¢
f
 
в¢¢
dj
dj
Рис. 6.5
s
t
My
My
sэкв
A
B
 
sx
sz=0
sy=0
sx
t

Однако экспериментально установлено, что нормальные напряжения σy, σz пренебрежимо малы по сравнению с напряжениями σx. Принимается так называемая гипотеза ненадавливания продольных волокон σy = 0, σz = 0. Поэтому можно принять, что материал балки находится при линейном напряженном состоянии вдоль оси x, и деформации подчиняются закону Гука. То есть нормальные напряжения при изгибе можно определить из формулы. Установим закон изменения деформаций при изгибе балки. Экспериментально получено, что в деформируемой балке поперечные сечения плоские до деформации остаются плоскими и поперечными после деформации, имеет место гипотеза плоских сечений. При этом верхние волокна удлиняются, нижние укорачиваются, а продольная линия не меняет своей длины. Слой балки, не испытывающий при изгибе ни растяжения, ни сжатия, называется нейтральным слоем. Линия пересечения нейтрального слоя и плоскости поперечного сечения называется нейтральной линией.

Определим относительную деформацию волокна ав εx (далее будем обозначать ее просто ε).

,

где r - радиус кривизны нейтрального слоя,

z - расстояние от нейтрального слоя до рассматриваемого волокна балки.

Подставляя это соотношение в закон Гука, получим:

e

(6.3)

т.е. напряжения s линейно зависят от координаты z.

Используя интегральную связь между напряжениями и изгибающим моментом

,

подставляя в него соотношение (6.3), получим

,

где - осевой момент инерции сечения.

Подставляя полученное выражение в (6.3), имеем формулу для нормальных напряжений при изгибе

. (6.4)

Эпюра нормальных напряжений показана на рис. 6.5. Как видно, на нейтральной линии они равны нулю, максимального значения напряжения достигают в крайних верхних и нижних волокнах балки.

.

Обозначая, получим формулу для максимальных напряжений в произвольном сечении

,

где Wу – осевой момент сопротивления сечения изгибу, геометрическая харак-

теристика поперечного сечения.

Максимальное нормальное напряжение в балке возникает в сечении, где изгибающий момент достигает наибольшей по модулю величины, то есть в опасном сечении

.

Условие прочности при изгибе формулируется следующим образом: балка будет прочной, если максимальные нормальные напряжения не превысят допускаемых напряжений

.

Величина допускаемых напряжений назначается в зависимости от материала, из которого изготовлена балка.

Пластичные материалы обладают примерно равными пределами текучести на сжатие sтс и на растяжение sтр равны между собой и поэтому [sc]=[sp]=[s].

Для хрупких материалов, у которых прочность при сжатии выше, чем при растяжении, допускаемые напряжения на растяжение и сжатие, как правило, не равны между собой [sc]³[sp] и, поэтому, необходимо записывать два условия прочности

,,

где y max p и y max c - расстояния от нейтральной оси до наиболее удаленных растя-

нутого и сжатого волокон.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: