Колебания в биологических объектах

Лекция. 1. Колебания. Форма колебаний. Виды колебаний. Классификация. Характеристики колебательного процесса. Условия возникновения механических колебаний. Гармонические колебания.

Колеба́нияповторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро­магнитные и др. Однако различные колебательные процессы описываются одинаковы­ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы.

Форма колебаний может быть разной.

Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени рис.1. (В противном случае колебания называются апериодическими). Выделяют важный частный случай гармонических колебаний (рис.1).

Колебания, приближающиеся к гармоническим называются квазигармоническими.

Рис.1. Виды колебаний

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны c волнами. Исследованиями этих закономерностей занимается обобщённая теория колебаний и волн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, локальные, «местные» преобразования энергии.

Виды колебаний. Колебания различаютс я по природе:

механические (движение, звук, вибрация),

электромагнитные (например, колебания в колебательном контуре, объёмном резонаторе, колебания напряжённостей электрического и магнитного полей в радиоволнах, волнах видимого света и любых др. электромагнитных волнах),

электромеханические (колебания мембраны телефона, пьезокварцевого или магнитострикционного излучателя ультразвука);

химические (колебания концентрации реагирующих веществ, при так называемых периодических химических реакциях);

термодинамические (например, так называемое поющее пламя и др. тепловые автоколебания, встречающиеся в акустике, а также в некоторых типах реактивных двигателей);

колебательные процессы в космосе (большой интерес в астрофизике представляют колебания яркости звезд цефеид (пульсирующие переменные звезды сверхгиганты, изменяющие блеск с амплитудой от 0,5 до 2 звезной величины и периодом от 1 до 50 суток);

Таким образом, колебания охватывают огромную область физических явлений и технических процессов.

Классификация колебаний по характеру взаимодействия с окружающей средой:

свободные (или собственные) — это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания почти всегда затухающие).

Например, колебания груза на пружине, маятника, моста, корабля на волне, струны; колебания плазмы, плотности и давления воздуха при распространении в нём упругих (акустических) волн.

Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвает затухание).

вынужденные — колебания, протекающие в системе под влиянием внешнего периодического воздействия. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.

автоколебания — колебания, при которых система имеет запас потенциальной энергии, расходующейся на совершение колебаний (пример такой системы — механические часы). Характерным отличием автоколебаний от свободных колебаний является, то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.

параметрические — колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия,

случайные — колебания, при которых внешняя или параметрическая нагрузка является случайным процессом,

связанные колебания - свободные колебания взаимно связанных систем, состоящих из взаимодействующих одиночных колебательных систем. Связанные колебания имеют сложный вид вследствие того, что колебания в одной системе влияют через связь (в общем случае диссипативную и нелинейную) на колебания в другой

колебания в структурах с распределенными параметрами (длинные линии, резонаторы),

флуктуационные, происходящие в результате теплового движения вещества.

.

Условия возникновения колебаний.

1. Для возникновения колебания в системе необходимо вывести её из положения равновесия. Например, для маятника сообщив ему кинетическую (удар, толчок), либо – потенциальную (отклонение тела) энергию.

2. При выведении тела из положения устойчивого равновесия возникает равнодействующая сила, направленная к положению равновесия.

С энергетической точки зрения это значит, что возникают условия для постоянного перехода (кинетической энергии в потенциальную, энергии электрического поля в энергию магнитного поля и обратно.

3. Потери энергии системы за счет перехода в другие виды энергии (часто в тепловую энергию) малы.

Характеристики колебательного процесса.

На рис.1 представлен график периодического изменения функции F(x), которое характеризуется параметрами:

Амплитудамаксимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы.

Период — наименьший промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), T (c).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: