Напряжения при поперечном изгибе

При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мх и поперечная сила Qy (рис.6.16), которые связаны с нормальными и касательными напряжениями

Рис.6.16. Связь усилий и напряжений

а) сосредоточенная сила, б) распределенная
Рис.6.17. Модели прямого поперечного изгиба:

Выведенная в случае чистого изгиба стержня формула для прямого поперечного изгиба, вообще говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями, происходит депланация поперечных сечении (отклонение от закона плоских сечений). Однако для балок с высотой сечения h<l/4 (рис. 6.17) погрешность невелика и ее применяют для определения нормальных напряжений поперечного изгиба как приближенную. При выводе условия прочности при чистом изгибе использовалась гипотеза об отсутствии поперечного взаимодействия продольных волокон. При поперечном изгибе наблюдаются отклонения от этой гипотезы:

а) в местах приложения сосредоточенных сил. Под сосредоточенной силой напряжения поперечного взаимодействия могут быть достаточно велики и во много раз превышать продольные напряжения, убывая при этом, в соответствии с принципом Сен-Венана, по мере удаления от точки приложения силы;

б) в местах приложения распределенных нагрузок. Так, в случае, приведенном на рис. 6.17, б, напряжения от давления на верхние волокна балки. Сравнивая их с продольными напряжениями, имеющими порядок

,

приходим к выводу, что напряжения при условии, что h 2 << l2, так как.

Получим формулу для касательных напряжений. Примем, методика расчета нормальных напряжений известна, что касательные напряжения равномерно распределены по ширине поперечного сечения (рис. 6.18). Эта предпосылка выполняется тем точнее, чем уже поперечное сечение стержня. Точное решение задачи для прямоугольного поперечного сечения показывает, что отклонение от равномерного распределения, зависит от отношения сторон b/h. При (b/h) =1,0 оно составляет 12,6%, при (b/h) =0,5 — только 3,3%.

Рис.6.18. Расчетная модель поперечного прямого изгиба

Непосредственное определение напряжений затруднительно, поэтому находим равные им (вследствие закона парности) касательные напряжения, возникающие на продольной площадке с координатой у элемента длиной dz, вырезанного из балки, (рис. 6.18). Сам элемент показан на рис. 6.19. От этого элемента продольным сечением, отстоящим от нейтрального слоя на у, отсекаем верхнюю часть, заменяя действие отброшенной нижней части касательными напряжениями (индекс гу в дальнейшем опускаем), равнодействующая которых показана на рис. 6.19. Здесь, согласно второй предпосылке

Рис.6.19. Расчетный элемент бруса

Рис.6.20. Фрагмент расчетного элемента бруса

по ширине элемента b. Нормальные напряжения и, действующие на торцевых площадках элемента, также заменим их равнодействующими

,

.

Согласно первой предпосылке нормальные напряжения определяются уже известным способом,, где статический момент отсеченной части площади поперечного сечения относительно оси Ох.

Рассмотрим условие равновесия элемента (рис. 6.20) составив для него уравнение статики:

откуда после несложных преобразований, учитывая, что

получаем формулу для касательных напряжений при нормальном поперечном изгибе призматического стержня, которая называется формулой Журавского.

Рис.6.21. Распределение касательных напряжений по контуру прямоугольного сечения

В этой формуле by ширина сечения в том месте, где определяются касательные напряжения, а статический момент, подставляемый в эту формулу, может быть вычислен как для верхней, так и для нижней части (статические моменты этих частей сечения относительно его центральной оси Ох отличаются только знаком, так как статическим момент всего сечения равен нулю).

В качестве примера применения формулы Журавского построим эпюру касательных напряжений для случая прямоугольного поперечного сечения балки (рис. 6.21). Учитывая, что для этого сечения

получаем

где F=bh— площадь прямоугольника.

Как видно из формулы, касательные напряжения по высоте сечения меняются по закону квадратической параболы, достигая максимума на нейтральной оси


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: