Несобственные интегралы с бесконечным пределом интегрирования. Пусть функция f(x) определена и непрерывна на интервале [a, ¥)

Лекция № 21.

Несобственные интегралы.

Пусть функция f(x) определена и непрерывна на интервале [a, ¥). Тогда она непрерывна на любом отрезке [a, b].

Определение: Если существует конечный предел , то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ¥).

Обозначение:

Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится.

Если предел не существует или бесконечен, то несобственный интеграл расходится.

Аналогичные рассуждения можно привести для несобственных интегралов вида:

Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.

Пример.

- не существует.

Несобственный интеграл расходится.

Пример.

- интеграл сходится

Теорема: Если для всех х (x ³ a) выполняется условие и интеграл сходится, то тоже сходится и ³ .

Теорема: Если для всех х (x ³ a) выполняется условие и интеграл расходится, то тоже расходится.

Теорема: Если сходится, то сходится и интеграл .

В этом случае интеграл называется абсолютно сходящимся.

Интеграл от разрывной функции.

Если в точке х = с функция либо неопределена, либо разрывна, то

Если интеграл существует, то интеграл - сходится, если интеграл не существует, то - расходится.

Если в точке х = а функция терпит разрыв, то .

Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то

Таких точек внутри отрезка может быть несколько.

Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: