Уплотнения гидроцилиндров

Уплотнения гидроцилиндров

Уплотнения гидроцилиндров самоходных машин должны быть достаточно герметичными, надежными, удобными для монтажа, создавать минимальный уровень трения, иметь небольшие размеры и совместимость с рабочей жидкостью.

В неподвижных соединениях гидроцилиндров применяются, как правило, резиновые кольца круглого сечения.

В подвижных соединениях поршня и штока применяют резиновые и резино-тканевые манжеты, которые устанавливаются вместе с защитными кольцами из фторопласта.

Эти кольца препятствуют выдавливанию манжет из посадочных канавок в результате воздействия высокого давления рабочей жидкости.

На передней крышке гидроцилиндра устанавливают штоковый грязесъемник.

В последнее время широкое распространение получают прогрессивные системы уплотнений гидроцилиндров.

Поршневое уплотнение двойного действия для средних условий работы содержит фигурное резинотканевое кольцо, по бокам которого установлены фасонные кольца противовыдавливания и примыкающие к ним опорно-направляющие кольца из стекло-наполненного полимера.

Этот компактный уплотнительный узел устанавливается в простую по геометрии посадочную канавку с нежесткими допусками. Срок службы таких уплотнений составляет 20 лет.

В качестве штокового уплотнения применяется система из опорно-направляющего (компенсационного) кольца, уплотняющего фасонного резино-тканевого кольца совместно с кольцом противовыдавливания и резинового грязесъемника.

Поршневое уплотнение для тяжелых условий работы   содержит опорно-направляющее кольцо из феноло-альдегидного полимера и специального уплотнения, состоящего из фторопластового динамического уплотнительного элемента, усиливающего элемента из специальной резины и двух колец противовыдавливания.

Такие высокоэффективные уплотнения применяются при высоком давлении (до 60 МПа), требуют незначительных размеров посадочных канавок и легко собираются в моноблочном поршне.

Штоковый уплотнительный узел содержит опорно-направляющее буферное, уплотнительное кольца и грязесъемник. Буферное кольцо содержит фасонный круглый элемент из фторопласта и подпорного круглого резинового кольца. Буферное кольцо служит для компенсации скачков давления, возникающих в рабочих полостях гидроцилиндра. Это кольцо существенно увеличивает срок службы штоковых уплотнений и повышает их надежность. Уплотнительное U — образное манжетное кольцо выполнено из полиуретана.

Грязесъемник выполнен из полиуретана с металлическим армированием.

Описанные типы систем уплотнений существенно повышают качество гидроцилиндров и отвечают современным требованиям эксплуатации.

 

 

Изобретение относится к машиностроению, а именно к гидроприводу машин, работающих в полевых условиях, в частности к гидроцилиндрам.

Опыт эксплуатации машин в условиях низких отрицательных температур, а также анализ статистических данных показывает, что около 70% всех отказов приходится на узлы и детали гидропривода, что объясняется возрастанием вязкости охладившейся за время стоянки рабочей жидкости. Работа гидропривода машин, работающих в полевых условиях, разрешается при разогреве рабочей жидкости, а следовательно, при снижении вязкости.

Разогрев рабочей жидкости осуществляется как от внешних источников тепла, так и прямым дросселированием. 

Дросселирование заключается в перекачивании рабочей жидкости из гидробака по напорному трубопроводу через насос, дроссель или другое гидравлическое сопротивление обратно в гидробак. При этом способе разогрева тепло от трения подвижных частей вышеуказанных элементов гидропривода передается рабочей жидкости - маслу. Однако при таком способе разогрева рабочей жидкости происходит повышенный износ подвижных частей насоса, дросселя, а также трубопроводов. Кроме того, разогретая рабочая жидкость из гидробака при направлении ее к элементам гидропривода, не участвующих в дросселировании, быстро остывает, что снижает эффективность разогрева.

Для обеспечения безотказной работы машины также оснащаются системами тепловой подготовки гидропривода, которые также разогревают рабочую жидкость или корпусы гидроаппаратуры. Функционирование указанных систем связано со значительным расходом энергии (как от внутренних, так и внешних источников тепла), дефицит которой для мобильных машин, работающих в полевых условиях, очевиден. Особенно в условиях автономного функционирования машин в районах Крайнего Севера или приравненных к ним районах, вдали от баз механизации, где отсутствуют постоянные источники тепловой, электрической энергии и теплые помещения.

Известна система предпусковой тепловой подготовки ДВС и гидропривода машин [Патент РФ 2258153, МПК 7 F02N 17/06, опубл. 2005], состоящая из контура тепловой подготовки двигателя и контура тепловой подготовки гидропривода. Контур тепловой подготовки гидропривода включает в себя гидробак с теплообменником для разогрева масла, тепловой аккумулятор, насос-гидрораспределитель, гидроцилиндр, причем штоковая и бесштоковая полости гидроцилиндра соединены дополнительной гидролинией с вентилем. Указанная особенность позволяет повысить скорость тепловой подготовки как двигателя машины, так и гидропривода после длительной стоянки в условиях низких температур окружающего воздуха. Технический результат реализуется путем прямого перетекания разогретой в гидробаке рабочей жидкости (от теплообменника и теплового аккумулятора) по дополнительной гидролинии, соединяющей штоковую и бесштоковую полости гидроцилиндра. Открытый вентиль дополнительной гидролинии позволяет разогретому маслу свободно перетекать по полостям гидроцилиндра, что сокращает время на разогрев элементов гидропривода.

Недостатком указанной конструкции является наличие дополнительной, вынесенной на поверхность гидроцилиндра гидролинии с вентилем. Указанная линия является как дополнительным гидравлическим сопротивлением, так и потребителем (рассеивателем) тепла разогретого масла.

Задачей, на решение которой направлено заявляемое техническое решение, является сокращение затрат ресурсов на разогрев гидропривода машин, работающих в полевых условиях при низких отрицательных температурах, путем совершенствования конструкции гидроцилиндра.

Технический результат предлагаемой конструкции гидроцилиндра заключается в совершенствовании принципа работы и в снижении потерь тепловой энергии разогретого от внутренних и внешних источников тепла масла гидропривода.

Указанный технический результат достигается тем, что в гидроцилиндре гидропривода, содержащем корпус, соединенные поршень и шток, штоковую и бесштоковую полости, особенностью является то, что:

поршень имеет проходной канал,

в шток встроены дистанционно управляемый клапан и втулка,

втулка имеет проходной канал,

втулка установлена с возможностью ее перемещения при разогреве гидропривода под действием дистанционно управляемого клапана таким образом, что указанные проходные каналы поршня и втулки объединяются, соединяя при этом штоковую и бесштоковую полости гидроцилиндра.

Сокращение затрат ресурсов на разогрев реализуется перемещением разогретой рабочей жидкости из одной полости гидроцилиндра в другую и далее по элементам гидропривода без потерь в дополнительных соединениях или сопряжениях.

Изобретение поясняется чертежами, где на фиг.1 представлен разрез гидроцилиндра, на фиг.2 - гидроцилиндр, при разогреве гидропривода.

Предлагаемый гидроцилиндр содержит корпус 1, штоковую 2 и бесштоковую 3 полости, которые образуются посредством соединенных поршня 4 и штока 5. Поршень 4 имеет проходной канал 6 произвольного сечения. В шток 5 гидроцилиндра встроен дистанционно управляемый клапан 7 и втулка 8. Втулка 8 имеет проходной канал произвольного сечения. Канал 6 поршня 4 совмещается с каналом втулки 8 при срабатывании клапана 7.

Гидроцилиндр работает следующим образом.

При разогреве гидропривода включается дистанционно управляемый клапан 7, расположенный в штоке 5 гидроцилиндра. При этом перемещается втулка 8 таким образом, чтобы ее проходной канал совпал с проходным каналом 6 поршня 4. Разогретая рабочая жидкость из гидробака подается в одну из полостей гидроцилиндра, например штоковую 2, действуя на поршень 4, получает сопротивление от более вязкого масла в другой полости, поэтому проходит через проходной канал 6 в другую полость 3. При этом перемещение соединенного с поршнем 4 штока 5 становится невозможным. Движение разогретой рабочей жидкости из одной полости в другую обеспечивает теплообмен с корпусом 1, штоком 4, поршнем 5, клапаном 7 и далее, по выходу из гидроцилиндра, по элементам гидропривода. Тем самым обеспечивается продолжение процесса разогрева гидропривода.

После завершения цикла разогрева гидропривода клапан 7 перемещает втулку 8, тем самым закрывая проходной канал 6. При закрытом канале 6 рабочая жидкость действует непосредственно на поршень 4, перемещая его в корпусе 1 гидроцилиндра. Этим задается рабочий режим гидроцилиндра.

Применение указанной конструкции гидроцилиндра позволяет ускорить процесс тепловой подготовки гидропривода (как при дросселировании, так и от внутренних и внешних источников энергии), поскольку большее число элементов участвует в теплообмене.

Теплообмен между рабочей жидкостью и элементами гидропривода позволяет обеспечить повышение ресурса машины, работающей при низких отрицательных температурах.

Гидроцилиндр гидропривода, содержащий корпус, соединенные поршень и шток, штоковую и бесштоковую полости, отличающийся тем, что поршень имеет проходной канал, в шток встроены дистанционно управляемый клапан и втулка, причем указанная втулка имеет проходной канал и установлена с возможностью ее перемещения при разогреве гидропривода под действием дистанционно управляемого клапана таким образом, что указанные проходные каналы поршня и втулки объединяются, соединяя при этом штоковую и бесштоковую полости гидроцилиндра.

 

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ.

 

Изобретение относится к области подъемно-транспортного машиностроения и гидравлике, а именно к гидроцилиндрам, располагаемым на автомобильных кранах, кранах-манипуляторах. Изобретение может быть использовано для изготовления гидроцилиндров для перемещения выдвижных секций стрелы, гидроцилиндров выдвижения выносных опор, гидроцилиндров вывешивания, гидроцилиндров изменения вылета стрелы крана или стрелы крана-манипулятора.

 

УРОВЕНЬ ТЕХНИКИ.

 

Известно большое количество аналогов заявленного изобретения как отечественной, так и зарубежной разработки. Так, аналогичные гидроцилиндры, описанные в RU 2219381, RU 2219382, RU 2219383 и других источниках, могут работать в условиях действия изгибающих нагрузок. Однако они не предназначены для передачи крутящего момента.

 

Из числа известных аналогов заявляемого технического решения ближайшим (прототипом) может служить гидроцилиндр двухстороннего действия для выдвижения секций многозвенной стрелы автомобильного крана КС-59711 (Руководство по эксплуатации КС-59711.00.000 РЭ). Указанный гидроцилиндр содержит корпус, поршень, шток, проушины, уплотнения.

 

Недостатками гидроцилиндра являются:

 

i. низкая устойчивость изгибу.

 

ii. отсутствие передачи крутящего момента, приложенного к проушинам гидроцилиндра.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ.

 

Задачей настоящего изобретения являются повышение прочностных характеристик гидроцилиндров.

 

В соответствии с изобретением поставленная задача достигается тем, что заявляемый гидроцилиндр содержит корпус, поршень, шток, проушины, уплотнения и от прототипа отличается тем, что корпус выполнен в виде прямого эллиптического цилиндра, поршень выполнен в виде прямого эллиптического цилиндра и шток выполнен в виде прямого эллиптического цилиндра и в поперечном сечении границы корпуса, штока и поршня описываются уравнением: х2/а2+y 2/в2=1,

 

где а - длина большой полуоси эллипса;

 

в - длина малой полуоси эллипса,

 

и для границ корпуса, штока и поршня, выполняется условие:

 

а/в=1.8...2.7.

 

Техническими результатами являются:

 

i. Повышенная устойчивость изгибу в продольной плоскости гидроцилиндра, проходящей через большие полуоси наружных границ поперечных сечений корпуса, поршня и штока гидроцилиндра.

 

ii. Предотвращение вращения поршня в корпусе относительно продольной оси, что обеспечит восприятие гидроцилиндром крутящего момента, приложенного к проушинам.

 

Для корпуса гидроцилиндра большая полуось эллипса составляет величину из диапазона от 0.5 м до 0.05 м. Толщина корпуса составляет величину от 0.002 м до 0.02 м.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Гидроцилиндр, содержащий корпус, поршень, шток; проушины, уплотнения, отличающийся тем, что корпус выполнен в виде прямого эллиптического цилиндра, поршень выполнен в виде прямого эллиптического цилиндра, и шток выполнен в виде прямого эллиптического цилиндра, и в поперечном сечении границы корпуса, штока и поршня описываются уравнением:

x2/a2 +y22=1,

где а - длина большой полуоси эллипса;

в - длина малой полуоси эллипса,

и для границ корпуса, штока и поршня выполняется условие:

а/в=1,8...2,7.

Изобретение относится к устройствам, снижающим гидравлическое сопротивление трубопровода при перекачивании по нему жидкостей, и может найти применение при гидротранспорте нефтей, масел, растворов, эмульсий, суспензий, воды, расплавов полимеров других ньютоновских и неньютоновских жидких сред. Техническим результатом является расширение возможностей применения устройства для уменьшения гидравлического сопротивления трубопровода за счет подачи в пограничный слой маловязкой жидкости, газа, пара, эмульсий, химических реагентов, полимерных растворов и т.п. В устройстве для уменьшения гидравлических потерь в трубопроводе, включающем цилиндрическую пружину, установленную внутри трубопровода с наружным диаметром, равным внутреннему диаметру трубы, и шагом витка, определяемым по формуле

где - шаг витка, м; V - скорость движения жидкости, м/с; D - внутренний диаметр трубопровода, м; g=9,81 - ускорение свободного падения, м/с2, при этом цилиндрическая пружина выполнена из трубки, на боковой поверхности которой на расстоянии, равном 1/4 шага витка, выполнены отверстия таким образом, что их ось совпадает с направлением потока жидкости в трубопроводе.

 

Стенд для испытания силового гидроцилиндра

 

Изобретение относится к устройствам для испытания гидроцилиндров различных гидравлических систем.

 

Известные стенды для испытания гидроцилиндров содержат краны, источник питания и рабочий гидроцилиндр. Однако они имеют большие размеры и металлоемки.

 

Наиболее близким техническим решением к предлагаемому является стенд для испытания гидроцилиндров, содержащий рабочий гидроцилиндр с соединенными между собой сливными отверстиями, первый напорный золотник с обратным клапаном, установленный между поршневой полостью рабочего гидроцилиндра и блоком управления, напорная магистраль которого подключена через последовательно включенные дроссель и насос к резервуару с жидкостью, второй напорный золотник с обратным клапаном, установленный между блоком управления и выходным каналом к поршневой полости испытуемого гидроцилиндра.

 

Этот стенд имеет большие габариты, так как при испытании гидроцплпндров по всей длине длина рабочего гидроцилиндра должна быть не меньше длины испытуемого гидроцилиндра.

 

Список литературы

 

http://supertehnika.at.ua/

 

википедия

http://www.findpatent.ru/

 

http://www.stroitelstvo-new.ru/

 

http://www.freepatent.ru/

 

http://www.hydac.com.ru/

 

Свешников В.К. Усов А.А. "Станочные гидроприводы" 2 изд. М. 1988

Башта Т.М. "Гидравлика, гидромашины и гидроприводы" М. 1982

 

[Каверзин С.В. Работоспособность гидравлического привода самоходных машин при низких температурах. Красноярск: Издательство Красноярского университета, 1986].

 

[Каверзин С.В. и др. Разогрев рабочей жидкости в гидроприводе самоходных машин // Журнал «Строительные и дорожные машины», 1983, №11],


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: