И площадь агломерации производств. Агломерируемые производства должны размещаться в штрихованном сегменте

Агломерируемые производства должны размещаться в штрихованном сегменте. Выбор точки размещения происходит с учетом транспортного фактора. В более общем случае несколько предприятий образуют не один, а несколько сегментов.

А. Вебер рассматривает различные ситуации при осуществлении агломерации, конкретизируя методику нахождения штандорта. Он предлагает формулы агломерационных эффектов.

Пусть М — производственная масса какого-либо крупного производства. Величина сбережений от агломерации в расчете на единицу продукта будет выражаться в виде функции сбережения — f(M). Тогда общая величина сбережений на всю производственную массу составит:

Э1 = Мf(M).

Допустим, что с крупным производством сливается мелкое производство с производственной массой т. Тогда общая суммасбережения для двух производств составит:

Э2 = (М + т) • f(M + т).

Определим приращение сбережения, получаемого в результате слияния двух производств:

Э = Э2 − Э1 = (М + т) • f(M + т)M • f (M)

Cлияние мелкого производства с крупным происходит, согласно А. Веберу, в том случае, если величина сбережения от слияния предприятий больше (или по крайней мере не меньше) перерасхода транспортных затрат из-за переноса производства т в пункт производства М, т.е.:

где А — штандортный вес;

R — радиус отклонения;

S —ставка транспортного тарифа (т/км)

Отсюда можно определить величину наибольшего, экономи­ки допустимого, радиуса отклонения.

Определяем первую производную функции:

«Функция f(M), называемая функцией агломерации, служит выражением притягательной силы крупного производства по отношению к рассеянным мелким производствам. Поскольку f (M) = ARS, то R = f (M): AS, т.е. максимально допустимый радиус отклонения прямо пропорционален функции агломерации и обратно пропорционален штандортному весу и тарифной ставке.

Выведенная формула агломерации f(M) = ARS включает три фактора, от которых зависит агломерация. Требуется учесть еще одно условие — производственную плотность.

Обозначим через р производственную плотность, под которой здесь понимается объем продукции, приходящейся на единицу площади с радиусом R, при равномерном распределении производства на данной площади. Тогда вся производственная масса, притягиваемая к агломерационному центру, будет равна πR2p = М.

Отсюда

Сравнивая полученную формулу с ранее выведенной, получаем окончательную формулу агломерации

А. Веберу первому удалось выработать многофакторную теорию размещения промышленного предприятия, опирающуюся на методы количественного анализа (математическое моделирова­ние). Так же как и его предшественник В. Лаунхардт, А. Вебер не вышел за рамки проблемы размещения отдельного предприятия. Однако его исследования стали мощным стимулом для создания более общих теорий размещения.




double arrow
Сейчас читают про: