Группа макролидов

Классификация аминогликозидов

Выделяют три поколения аминогликозидов:

I поколение — стрептомицин, канамицин, неомицин

II поколение — гентамицин, тобрамицин, нетилмицин, сизомицин

III поколение — амикацин

Исторически первым аминогликозидом был стрептомицин, выделенный в 1944 году из актиномицета Streptomyces griseus. Он также был одним из первых известных антибиотиков вообще, вторым после пенициллина. В 1957 году был выделен канамицин.

На заре эры антибиотикотерапии стрептомицин, наряду с пенициллином, применяли широко и практически бесконтрольно, в том числе и при банальных инфекциях, которые в настоящее время не расцениваются как показания к назначению аминогликозидных антибиотиков. Это способствовало нарастанию устойчивости возбудителей банальных инфекций к стрептомицину и появлению частичной перекрёстной устойчивости к другим аминогликозидам.

Впоследствии стрептомицин из-за высокой ототоксичности и нефротоксичности, а также из-за быстрого развития устойчивости большинства часто встречающихся возбудителей к нему стали применять почти исключительно в составе комбинированных режимов специфической химиотерапии туберкулёза, а также некоторых редких, почти ликвидированных в настоящее время инфекций, таких, как чума, а основным применяемым аминогликозидом в остальных клинических ситуациях на долгое время стал канамицин.

В настоящее время основными, наиболее часто применяемыми, аминогликозидными антибиотиками являются препараты II поколения, в частности, гентамицин. Частота назначения канамицина значительно снизилась в связи с тем, что он обладает более высокой ото- и нефротоксичностью по сравнению с препаратами II поколения, а также в связи с нарастанием устойчивости возбудителей к канамицину.

Аминогликозид III поколения амикацин рассматривается в настоящее время как препарат резерва, который нежелательно назначать широко и часто, чтобы предотвратить распространение устойчивости возбудителей к нему. Устойчивость возбудителей к амикацину пока распространена мало. Перекрёстная устойчивость с другими аминогликозидами неполная, и часто возбудители, устойчивые к аминогликозидам II поколения, остаются чувствительными к амикацину. Характерно также, что устойчивость возбудителей к амикацину нарастает медленнее, чем к препаратам II поколения. Устойчивость возбудителей к препаратам II поколения, в частности гентамицину, также развивается медленнее, чем к препаратам I поколения канамицину и стрептомицину.

Тетрациклины — группа антибиотиков, относящихся к классу поликетидов, близких по химическому строению и биологическим свойствам. Представители данного семейства характеризуются общим спектром и механизмом антимикробного действия, полной перекрёстной устойчивостью, близкими фармакологическими характеристиками. Различия касаются некоторых физико-химических свойств, степени антибактериального эффекта, особенностей всасывания, распределения, метаболизма в макроорганизме и переносимости.

Представители

1945 г. — открыт первый представитель данной группы антибиотиков — хлортетрациклин (торговые названия ауреомицин, биомицин) — выделен из культуральной жидкости лучистого гриба Streptomyces aureofaciens; первые экспериментальные и клинические работы, характеризующие активность, относятся к 1948 г.

1949 г. — открыт окситетрациклин (террамицин) — выделен из культуральной жидкости другого актиномицета Streptomyces rimosus; в медицинской практике начали использовать уже в 1950 г.

1952 г. — химическим путём, посредством восстановительного дегалоидирования хлортетрациклина, получен полусинтетический антибиотик тетрациклин.

Другие важные тетрациклины:

полусинтетические производные окситетрациклина — доксициклин, метациклин.

производные тетрациклина — гликоциклин, морфоциклин.

комбинированные лекарственные формы с олеандомицином — олететрин, олеморфоциклин.

а также миноциклин.

Строение

Основой молекулы тетрациклиновых антибиотиков является полифункциональное гидронафтаценовое соединение с родовым названием тетрациклин. В химическом отношении различие между хлортетрациклином и окситетрациклином состоит в том, что хлортетрациклин в 7-м положении содержит хлор, а окситетрациклин в 5-м положении — гидроксильную группу. В отличие от хлортетрациклина и окситетрациклина тетрациклин не имеет атома хлора в 7-м положении и гидроксильной группы в 5-м положении.

В основе антибактериального действия тетрациклинов лежит подавление белкового синтеза.

Тетрациклины подавляют кодон-зависимое связывание аминоацил-тРНК с изолированной 30S субчастицей бактериальной рибосомы. В соответствии с этим, место специфического связывания тетрациклинов с рибосомой обнаружено на 30S субчастице рибосомы, хотя при более высоких концентрациях они могут связываться также и с 50S субчастицей, обнаруживая побочные действия.

Устойчивость микроорганизмов к тетрациклинам in vitro развивается медленно, по пенициллиновому типу. Общим правилом для большинства видов микроорганизмов является медленное нарастание устойчивости при первых 10-18 пассажах и более быстрое и неравномерное — в дальнейшем. При пассажах на агаре удаётся получить бо́льшую устойчивость, чем в бульоне — жидкой питательной среде. Скорость возрастания устойчивости зависит от индивидуальных особенновтей штамма. С трудом, очень медленно и незначительно адаптируются к тетрациклинам бруцеллы, Klebsiella и некоторые другие микроорганизмы. Резистентные формы, как правило, утрачивают устойчивость после ряда пересевов на среды, не содержащие антибиотика.

В условиях in vitro резистентность микробов к одному из тетрациклинов сопровождается перекрёстной устойчивостью к другим антибиотикам этой группы, что объясняется близостью их химического строения и механизма действия. Практически не обнаруживаются штаммы микроорганизмов, сохранившие чувствительность к одному из тетрациклинов при развитии устойчивости к другому

Левомицетин является антибиотиком широкого спектра действия; эффективен в отношении многих грамположительных и грамотрицательных бактерий, риккетсий, спирохет и некоторых крупных вирусов (возбудители трахомы, пситтакоза, пахового лимфогранулематоза и др.); действует на штаммы бактерий, устойчивые к пенициллину, стрептомицину, сульфаниламидам. В обычных дозах действует бактериостатически. Слабоактивен в отношении кислотоустойчивых бактерий, синегнойной палочки, клостридий и простейших. Лекарственная устойчивость к препарату развивается относительно медленно, при этом, как правило, перекрестной устойчивости к другим химиотерапевтическим средствам не возникает.

Левомицетин — синтетический аналог природного антибиотика хлорамфеникола. Механизм антимикробного действия левомицетина связан с нарушением синтеза белка микроорганизмов (ингибирует передачу активированных аминокислот с транспортной РНК на рибосомы и тем самым прекращается oбpaзование пептидных цепей белка)

В настоящее время группа макролидов насчитывает более десяти различных антибиотиков. Все они имеют определенное структурное сходство с эритромицином, отличаясь от него по количеству атомов углерода в лактонном кольце и характеру боковых цепей. Макролиды можно классифицировать по химической структуре и по происхождению.

Химическая классификация предполагает разделение препаратов на 3 группы, в зависимости от числа атомов углерода в лактонном кольце - 14-, 15- и 16-членные, причем 15-членные препараты правильнее называть не макролидами, а азалидами, так как в кольцо включен атом азота (рис. 1).

В последнее время все большее внимание уделяют характеру сахаров, составляющих боковые цепи, так как они, например, определяют действие макролидов на синегнойную палочку.

По происхождению макролиды подразделяются на природные, полусинтетические и пролекарства. Последние представляют собой эфиры, соли и соли эфиров природных макролидов, которые характеризуются улучшенным вкусом, большей кислотоустойчивостью и более высокой и стабильной биодоступностью при приеме внутрь по сравнению с исходными продуктами, выпускаемыми в виде оснований.

Структурные особенности различных макролидов предопределяют прежде всего (1) различия в их фармакокинетических характеристиках,

(2) особенности антибактериальной активности,

(3) переносимости и

(4) возможности взаимодействия с другими лекарствами. В то же время все макролидные антибиотики обладают одинаковым механизмом антимикробного действия и имеют в целом близкие спектры активности. Механизмы развития резистентности микрофлоры к ним также являются близкими, но тем не менее есть различия между 16-членными и другими макролидами.

МЕХАНИЗМ И ХАРАКТЕР ДЕЙСТВИЯ

Антимикробное действие макролидов обусловлено нарушением синтеза белка на этапе трансляции в клетках чувствительных микроорганизмов, ингибируются реакции транслокации и транспептидации. В результате приостанавливается процесс формирования и наращивания пептидной цепи. Связывание макролидов с 50S-субъединицей возможно на любой стадии рибосомального цикла. Выявлено, что 14- и 16-членные макролиды отличаются по особенностям связывания с различными доменами пептидил-трансферазного центра.

Связывание с 50S-субъединицами рибосом характерно также для таких антибиотиков, как линкосамиды*, стрептограмины** и хлорамфеникол. Несмотря на то, что по особенностям связывания с доменами пептидил-трансферазного центра данные антибиотики отличаются от макролидов, при одновременном назначении между ними возможна конкуренция и ослабление антимикробного эффекта.

Характер антимикробного действия макролидов обычно является бактериостатическим. Тем не менее в определенной степени он зависит от концентрации антибиотика в очаге инфекции, вида микроорганизма, фазы его развития и степени микробной обсемененности. В высоких концентрациях (в 2-4 раза превышающих МПК) и особенно в отношении тех микроорганизмов, которые находятся в фазе роста, макролиды могут оказывать бактерицидное действие. Подобным образом они действуют на b-гемолитический стрептококк группы А, пневмококк, менингококк, возбудителей коклюша и дифтерии. В то же время против золотистого стафилококка макролиды в большинстве случаев проявляют бактериостатический эффект.

Микробиологическая активность макролидных антибиотиков in vitro зависит от ряда факторов, во-первых, от рН среды. При этом изменение активности может быть связано не с нарушением химической структуры макролидов, а с их ионизацией в условиях повышенной кислотности, следствием чего является снижение проницаемости через цитоплазматическую мембрану бактерий. Поскольку макролиды являются слабыми основаниями, их активность возрастает в щелочной среде (рН 5,5-8,5), так как при этом они меньше ионизируются и лучше проникают внутрь микробной клетки. Оптимальный эффект эритромицина, кларитромицина и особенно азитромицина проявляется при рН > 7,5, в то время как при рН < 7,0 он падает. Активность азитромицина против Mycoplasma pneumoniae при рН 7,7 в 32 раза выше, чем при рН 6,7.

Во-вторых, активность снижается при повышении содержания С02 в инкубационной атмосфере. Это особенно характерно для так называемых капнофильных микроорганизмов, требующих для своего роста повышенной концентрации (до 5%) углекислоты, таких как S.pneumoniae, S.pyogenes, H.influenzae. В то же время определение чувствительности диско-диффузионным методом, разведением в агаре, Е-тестами требует инкубации с повышенным содержанием С02. Вследствие этого отмечается повышение величин МПК макролидов, что иногда приводит к ложноположительной оценке резистентности, причем наиболее чувствительным препаратом является азитромицин. В настоящее время рассматривается вопрос о пересмотре критериев интерпретации при определении чувствительности капнофильных микроорганизмов при повышенном содержании углекислоты. Таким образом, при сравнении данных по чувствительности S.pneumoniae, S.pyogenes, H.influenzae, полученных в различных лабораториях, следует обязательно вникать в детали микробиологического тестирования.

В-третьих, оказывает влияние различное содержание в среде катионов Са и Mg. Во многих случаях это объясняет вариации данных по микробиологической активности макролидов in vitro.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: