Архитектура экспертной системы

Экспертные системы

Экспертные системы

Под экспертной системой понимается программная система, которая моделирует рассуждения человека - эксперта в некоторой определенной предметной области, используя базу знаний, содержащую факты и правила об этой области и некоторый механизм логического вывода результата экспертизы.

Достоинство экспертных систем заключается в возможности принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Причем решение задач предполагается осуществлять в условиях неполноты, недостоверности, многозначности исходной информации и качественных оценок процессов.

Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, и может выполнять следующие роли:

  • консультанта для неопытных или непрофессиональных пользователей;
  • ассистента в связи с необходимостью анализа экспертом различных вариантов принятия решений;
  • партнера эксперта по вопросам, относящимся к источникам знаний из смежных областей деятельности.

Архитектура экспертной системы

Экспертная система (рис.12.9) включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструментарий доступа и обработки знаний. Программный инструментарий состоит из механизмов вывода заключений, приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса [68].

Центральным компонентом экспертной системы является база знаний, которая выступает по отношению к другим компонентам как содержательная подсистема, составляющая основную ценность.


Рис. 12.9. Архитектура экспертной системы

База знаний - это совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области и их взаимосвязей, действий над объектами и, возможно, неопределенностей, с которыми эти действия осуществляются [69].

В качестве методов представления знаний чаще всего используются либо правила, либо объекты (фреймы), либо их комбинация. Так, правила представляют собой конструкции:

Если < условие >То <заключение> CF (фактор определенности) <значение>

В качестве факторов определенности (CF), как правило, выступают либо условные вероятности байесовского подхода (от 0 до 1), либо коэффициенты уверенности нечеткой логики (от 0 до 100).

Примеры правил имеют следующий вид.

Правило 1: если Коэффициент рентабельности > 0.2, то Рентабельность = "удовлетворительна" CF 100.

Правило 2: если Задолженность = "нет" и Рентабельность = "удовлетворительна", то Финансовое состояние = "удовлетворительно" CF 80.

Правило 3: если Финансовое состояние = "удовлетворительно" и Репутация = "удовлетворительна", то Надежность предприятия = "удовлетворительна" CF 90.

Объекты представляют собой совокупность атрибутов, описывающих свойства и отношения с другими объектами. В отличие от записей баз данных, каждый объект имеет уникальное имя. Часть атрибутов отражают типизированные отношения, такие как "род - вид" (super-class - sub-class), "целое - часть" и др. Вместо конкретных значений атрибутов объектов могут задаваться значения по умолчанию, присущие целым классам объектов, или присоединенные процедуры (process).

Интеллектуальный интерфейс. Обмен данными между конечным пользователем и ЭС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения пользователя и преобразует их в форму представления базы знаний и, наоборот, переводит внутреннее представление результата обработки в формат пользователя и выдает сообщение на требуемый носитель.

Важнейшим требованием к организации диалога пользователя с ЭС является естественность, которая не означает буквально формулирование потребностей пользователя предложениями естественного языка, хотя это и не исключается в ряде случаев [70].

Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям пользователя и велась в профессиональных терминах.

Механизм вывода. Этот программный инструментарий получает от интеллектуального интерфейса преобразованный во внутреннее представление запрос, формирует из базы знаний конкретный алгоритм решения задачи, выполняет алгоритм, а полученный результат предоставляется интеллектуальному интерфейсу для выдачи ответа на запрос пользователя. В основе применения любого механизма вывода лежит процесс нахождения в соответствии с поставленной целью и описанием конкретной ситуации (исходных данных), относящихся к решению единиц знаний (правил, объектов, прецедентов и т.д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату. Для представления знаний в форме правил это может быть прямая или обратная цепочка рассуждений (рис.12.10 и рис.12.11).


Рис. 12.10. Прямая цепочка рассуждений


Рис. 12.11. Обратная цепочка рассуждений

Для объектно-ориентированного представления знаний характерно применение механизма наследования атрибутов, когда значения атрибутов передаются по иерархии от вышестоящих классов к нижестоящим. Также при заполнении атрибутов фрейма необходимыми данными запускаются на выполнение присоединенные процедуры.

Механизм объяснения. В процессе или по результатам решения задачи пользователь может запросить объяснение или обоснование хода решения. С этой целью ЭС должна предоставить соответствующий механизм объяснения.

Объяснительные способности ЭС определяются возможностью механизма вывода запоминать путь решения задачи. Тогда на вопросы пользователя "Как?" и "Почему?" получено решение или запрошены те или иные данные, и система всегда может выдать цепочку рассуждений до требуемой контрольной точки, сопровождая выдачу объяснения заранее подготовленными комментариями. В случае отсутствия решения задач объяснение должно выдаваться пользователю автоматически.

Полезно иметь возможность и гипотетического объяснения решения задачи, когда система отвечает на вопросы, что будет в том или ином случае. Однако не всегда пользователя интересует полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать из цепочки только ключевые моменты с учетом их важности и уровня знаний пользователя. Для этого в базе знаний необходимо поддерживать модель знаний и намерений пользователя.

Если же пользователю все еще не понятен полученный ответ, то система должна быть способна в диалоге на основе поддерживаемой модели проблемных знаний обучать пользователя тем или иным фрагментам знаний, т.е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не использовались.

Механизм приобретения знаний. База знаний отражает знания экспертов (специалистов) в данной проблемной области о действиях в различных ситуациях или процессах решения характерных задач. Выявлением подобных знаний и последующим их представлением в базе знаний занимаются специалисты, называемые инженерами знаний. Для ввода знаний в базу и их последующего обновления ЭС должна обладать механизмом приобретения знаний. В простейшем случае используется интеллектуальный редактор, который позволяет вводить единицы знаний в базу и проводить их синтаксический и семантический контроль, например, на непротиворечивость. В более сложных случаях инженер знаний должен из-влекать знания путем специальных сценариев интервьюирования экспертов, или из вводимых примеров реальных ситуаций, как в случае индуктивного вывода, или из текстов, или из опыта работы самой интеллектуальной системы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: