Эволюция состава и давления земной атмосферы

Пользуясь оригинальной методикой расчёта [5, 6], мы получили эволюцию cостава и давления атмосферы для всего времени жизни Земли (рис. 3). Учитывалось, что при образовании планеты её атмосфера состояла только из инертного азота и следов благородных газов, а давление было около 1 атм. Никаких добавок химически активных газов (СО2, СО, О2, Н2О или ОН) в доархейской (катархейской) атмосфере не наблюдалось, поскольку все они быстро поглощались реголитом (пористым грунтом) растущей Земли.


Рис. 3. Эволюция состава и давления земной атмосферы (штриховой линией отмечено атмосферное давление в предположении, что бактериального поглощения азота не существовало)

После начала дегазации Земли в раннем архее стало быстро нарастать парциальное давление углекислого газа СО2, а затем и метана СH4, который образовывался в результате восстановления СО2 в присутствии H2O на металлическом железе, имевшемся в первичном веществе молодой Земли. Атмосфера стала азотно-углекислотно-метановой и существенно восстановительной, что, безусловно, способствовало возникновению жизни. После диссоциации метана под влиянием жёсткого излучения Солнца, примерно через 200 млн лет после начала тектонической активности Земли (около 4 млрд лет назад), земная атмосфера превратилась в нейтральную углекислотно-азотную. Благодаря дегазации азота из мантии в позднем архее парциальное давление азота заметно повысилось. Вместе с тем парциальное давление СО2 в конце архея стало снижаться, поскольку этот газ стал интенсивно связываться в карбонатных осадках. Наконец, начиная примерно с 3,5 млрд лет назад, после существенного подъёма средней температуры атмосферы, к её углекислотно-азотному составу прибавилось заметное количество паров воды.

После выделения земного ядра и образования слоя океанической коры современного типа (около 2,5 млрд лет назад) в результате резкого снижения тектонической активности Земли почти весь атмосферный углекислый газ оказался связанным в карбонатных породах Земли, а состав протерозойской атмосферы стал почти чисто азотным, лишь с небольшими примесями аргона и метана. Начиная со среднего протерозоя парциальное давление азота стало заметно снижаться в связи с жизнедеятельностью азотфиксирующих бактерий. Одновременно с этим в позднем рифее в атмосфере начал накапливаться кислород.

В фанерозое парциальное давление азота продолжало падать, хотя в палеозое и мезозое оно во многом компенсировалось ускоренной генерацией биогенного кислорода. После же широкого развития цветковых растений в конце мезозоя, главных «производителей» кислорода, его парциальное давление достигло своего стационарного значения около 230 мбар ( 173 мм. рт.ст.). После этого благодаря продолжающемуся биогенному снижению парциального давления азота, в кайнозое атмосферное давление вновь стало уменьшаться, что и привело, согласно выражениям (1), (2), к новому похолоданию.

Следует подчеркнуть положительную роль азотпотребляющих бактерий в создании благоприятных условий для развития высокоорганизованной жизни на Земле. Если бы таких бактерий не было, то сейчас атмосферное давление достигало бы приблизительно 2 атм, средняя температура Земли равнялась бы 54 оС (вместо 15 оС), а на экваторе превышала бы 70 оС, что намного выше температуры коагуляции большинства белков. Подходящие для высокоорганизованной жизни условия могли бы сохраняться только на вершинах гор, да и то в высоких широтах. Но в таких экстремальных условиях не мог бы накапливаться в достаточных количествах необходимый для жизни кислород. Фактически, если бы не происходило удаления азота из земной атмосферы, сейчас, как и в архее, Землю населяли бы только термофильные бактерии и, быть может, примитивные многоклеточные.

В далёком будущем нас ждёт резкое увеличение парциального давления кислорода в связи с его выделением в процессе формирования земного ядра. Сейчас образование вещества внешней оболочки земного ядра идёт по реакции: 2FeO Fe • FeO + O. Выделяющийся кислород под влиянием высокого давления вновь связывается с оксидами железа, формируя магнетитовую компоненту мантии: FeO + O Fe3O4 + 76,48 ккал/моль, этому способствует и высвобождающаяся энергия сжатия (объём молекулы магнетита меньше, чем молекулярного объёма FeO).

После полного окисления силикатного железа мантии до стехиометрии магнетита образование вещества земного ядра уже будет сопровождаться выделением свободного и ни с чем не связывающегося кислорода: 2Fe3O4 3Fe • FeO + 5O. В результате, cпустя 600 млн лет, давление земной атмосферы должно быстро подняться выше 10 атм, вызвав тем самым на Земле сильнейший парниковый эффект: средние температуры значительно превысят 180 оС! После вскипания океанов давление поднимется ещё – до 270 атм, а температура – выше 600 оС (на Венере сейчас около 460 оС). Естественно, в таких условиях нечего и говорить о возможности сохранения не только высокоорганизованной, но и самой примитивной жизни.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: