Средняя гармоническая – это величина, обратная средней арифметической из обратных значений признака. Различают среднюю гармоническую простую и взвешенную.
Средняя гармоническая простая (the simple harmonic mean).

Средняя гармоническая взвешенная (the weighted harmonic mean) применяется тогда, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение.

Средняя арифметическая и средняя гармоническая величины могут применятся в одних и тех же ситуациях, но по разным данным. Если в логической формуле неизвестен числитель, то в расчетах применяется средняя арифметическая величина. Если в логической формуле неизвестен знаменатель, то в расчетах используется средняя гармоническая величина.
Средняя квадратическая величина (the quadratic mean) применяется тогда, когда вместо индивидуальных значений признака представлены квадраты исходных величин.

Средняя геометрическая (the geometric mean) применяется в случаях определения средней по значениям, имеющим большой разброс, либо в случаях определения средней величины по относительным показателям.

Средняя степенная. В математической статистике различные средние выводятся из формул степенной средней:

При z = 1 – средняя арифметическая;
z = –1 – средняя гармоническая;
z = 2 – средняя квадратическая.
Чем выше z, тем больше значения средней величины.






