Материалы для гидроизоляции бетона мостов

Для бето­на, подвергаемого тепло-влажностной обработке, а также для бе­тона, работающего в условиях попеременного замораживания и оттаивания, эти значения модуля упругости уменьшаются на 10%, а для бетона конструкций, не защищенных от солнечной радиации, — на 15%.

Бетон является упруго-вязкопластическим материалом. Его полные деформации от на­пряжений включают упругие, вязко-упругие и пластические дефор­мации, которые зависят от уровня напряжений.

Для расчета железобетонных конструкций мостов и труб важ­ны также упругие характеристики бетона и арматуры — модули упругости и коэффициенты Пуассона.

Расчетные сопротивления ненапрягаемой арматуры сжатию, используемые в расчете по первой группе предельных состояний, при наличии сцепления арматуры с бетоном принимают равными соответствующим расчетным сопротивлениям арматуры растяже­нию Rs. Наибольшие сжимающие напряжения Rpc в напрягаемой арматуре, расположенной в сжатой зоне сечения элемента и имею­щей сцепление с бетоном, следует принимать из условия предель­ной сжимаемости бетона не более 500 МПа.

Расчетные сопротивления арматуры растяжению для расчета по первой группе предельных состояний определяют делением их нормативных сопротивлений на соответствующие коэффициенты надежности по арматуре и на коэффициенты надежности конструк­ции. Их принимают различными для автодорожных и железнодо­рожных мостов. Этим учитывают степень ответственности этих сооружений.

Расчетные сопротивления бетона на осевые сжатие и растяже­ние для расчета мостовых конструкций по первой группе предель­ных состояний определяют делением соответствующего норматив­ного сопротивления на коэффициенты надежности по бетону и на коэффициент надежности конструкции.

Кубиковая прочность бетона является условной характеристикой его прочности. Действительная прочность бетона в конструкции более полно оце­нивается прочностью на сжатие бетонных образцов в виде призм, высота которых превышает поперечный размер в 3,5 раза и более. Призменная прочность бетона составляет 70—75% его кубиковой прочности. Прочность бетона на растяжение обычно в 10—15 раз меньше его кубиковой прочности. Предел прочности бетона на срез примерно в 2,5 раза больше предела его прочности на растяжение.

Коэффициент надежности конструкции, учитывающий степень ответственности мостовых конструкций, принимают для бетона равным gн=1,1.

Расчетные сопротивления бетона для расчета по второй группе предельных состояний устанавливают при коэффициенте надеж­ности по бетону gб = 1.

Значения расчетных сопротивлений арматуры растяжению при­ведены в табл. 31 СНиП 2.05.03-84*.

В связи с этим модуль упругости зависит от уровня напряжений и времени дей­ствия нагрузки. Кроме того, модуль упругости зависит от класса прочности бетона, возрастая с его повышением, он также зависит от возраста бетона, вида его напряженного состояния. Он умень­шается при температурно-влажностной обработке бетона, при работе бетона в условиях попеременного замораживания и оттаи­вания, воздействия солнечной радиации.

При проектировании железобетонных конструкций мостов и труб трудно учесть реальные значения модуля упругости бетона, поэтому для расчета применяют средние, условные значения моду­ля упругости Ebна сжатие по табл. 28 СНиП 2.05.03-84*.

Модуль сдвига бетона Gbпринимают равным 0,4 Eb а коэффи­циент Пуассона m=0,2.

Модули упругости арматуры принимают по табл. 34 СНиП 2.05.03-84*. По мере возрастания прочности стали, модуль упру­гости ее уменьшается с 206000 МПа до 196000 МПа. Модуль упругости пучков из параллельных проволок принимают 177000 МПа, а пучков из арматурных канатов К-7, канатов спи­ральных и двойной свивки— 167000 МПа.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: