double arrow

Гранулометрический состав горных пород


Условия формирования нефтеносных толщ включают наличие коллекторов с надежными покрышками практически непроницаемых пород.

Пласты, сложенные песками, состоят из разнообразных по размерам зерен неправильной формы. Количественное (массовое) содержание в породе частиц различной величины принято называть г р а н у л о м е т р и ч е с к и м с о с т а в о м, от которого зависят многие свойства пористой среды: проницаемость, пористость, удельная поверхность, капиллярные свойства и т. д. По механическому составу можно судить о геологических и палеогеографических условиях отложения пород залежи. Поэтому начальным этапом исследований при изучении генезиса осадочных пород может быть их гранулометрический анализ.

Так как размеры частиц песков обусловливают общую величину их поверхности, контактирующей с нефтью, от гранулометрического состава пород зависит количество нефти, остающейся в пласте после окончания его эксплуатации в виде пленок, покрывающих поверхность зерен.

Гранулометрический состав песков важно знать в нефтепромысловой практике. Например, на основе механического анализа в процессе эксплуатации нефтяных месторождений для предотвращения поступления песка в скважину подбирают фильтры, устанавливаемые на забое.




Размер частиц горных пород изменяется от коллоидных частичек до галечника и валунов. Однако по результатам исследований размеры их для большинства нефтесодержащих пород колеблются в пределах 1 – 0,01 мм.

Наряду с обычными зернистыми минералами в природе широко распространены глинистые и коллоидно-дисперсные минералы с размерами частиц меньше 0,1 мкм (0,001 мм). Значительное количество их содержится в глинах, лёссах и других породах.

В составе нефтесодержащих пород коллоидно-дисперсные минералы имеют подчиненное значение. Вместе с тем вследствие огромной величины их общей поверхности состав этих минералов влияет на процессы поглощения катионов (и анионов). От их количества в значительной степени зависит степень набухаемости горных пород в воде.

Механический состав пород определяют ситовым и седиментационным анализом. Ситовой анализ сыпучих горных пород применяется для рассева фракций песка размером от 0,05 мм и более. Содержание частиц меньшего размера определяется методами седиментации.

Ситовый анализ сыпучих горных пород применяют для определения содержания фракций частиц размером от 0,05 до 6 –7 мм, а иногда и до 100 мм. В лабораторных условиях обычно пользуются набором проволочных или шелковых сит с размерами отверстий (размер стороны квадратного отверстия) 0,053; 0,074; 0,105; 0,149; 0,210; 0,227; 0,42; 0,59; 0,84; 1,69 и 3,36 мм. Существуют и другие системы сит и всевозможных механических приспособлений для рассева.



Сита располагают при рассеве таким образом, чтобы вверху было сито с наиболее крупными размерами отверстий. Для определения механического состава керна берут навеску образца 50 г, хорошо проэкстрагированного и высушенного при температуре 107° С до постоянной массы. Просеивание проводят в течение 15 мин. Увеличение или уменьшение продолжительности просева может привести к неправильным результатам.

Для определения процентного содержания полученных фракций в исследуемом образце проводят их взвешивание на технических весах с точностью до 0,01 г. Сумма масс всех фракций после просеивания не должна отличаться от первоначальной массы образца более чем на 1—2%

Седиментационное разделение частиц по фракциям происходит вследствие различия скоростей оседания зерен неодинакового размера в вязкой жидкости. По формуле Стокса скорость осаждения в жидкости частиц сферической формы

(1.1)

где – ускорение силы тяжести; d — диаметр частиц; – кинематическая вязкость;

— плотность жидкости; – плотность вещества частицы.

Формула (1.1) справедлива при свободном нестесненном движении зерен; чтобы концентрация частиц не влияла на скорость их осаждения в дисперсной среде, массовое содержание твердой фазы в суспензии не должно превышать 1%.



Использование формулы Стокса при седиментационном анализе рассмотрим на примере пипеточного метода.

Из фракции песка, прошедшего через сито с наименьшими отверстиями, отбирают 10 г песка и перемешивают его с водой в цилиндре емкостью 1 л, помещенном в баню (рис. 1.1).

В цилиндр вставляется пипетка 2, глубина спуска ее кончика h составляет примерно 30 см. Допустим, что необходимо определить в песке количество частиц диаметром меньше dx. Для этого при помощи формулы (1.1) вычисляют время t падения частиц размером dx до глубины спуска пипетки h. Очевидно, с глубины h через время tx в пипетку проникнут только те частицы, диаметр которых меньше d1 так как к этому времени после начала их осаждения более крупные зерна расположатся ниже кончика пипетки. Высушив содержимое пипетки, определяют количество находящихся в суспензии частиц диаметром менее или более d1. Это легко сделать, так как масса всей навески G1, объем отобранной суспензии V, масса сухого остатка в ней G и объем жидкости V1 в цилиндре известны. Очевидно, процентное содержание в породе отобранных пипеткой фракций (т. е. частиц диаметром меньше, чем d1) будет

.

Рис.1.1 Седиментометр

1 – стеклянный кран; 2 – пипетка; 3 – мешалка; 4 – градуированный цилиндр;

% – стеклянный термостат

Отбирая последующие пробы через другие интервалы времени от начала отстаивания суспензии, точно так же определяют содержание более мелких фракций. Существует много методов седиментационного анализа. В лабораториях по исследованию грунтов широко применяют методы отмучивания током воды, отмучивания сливанием жидкости (метод Сабанина) и метод взвешивания осадка при помощи весов Фигуровского.







Сейчас читают про: