Турбобуры

Турбобур представляет собой забойный гидравлический двигатель с многоступенчатой турбиной. Гидравлическая энергия потока бурового раствора приводит во вращение вал, соединенный с валом шпинделя и долотом. Для различных условий бурения отечественная промышленность выпускает турбобуры, различающиеся по диаметру, числу секций, расположению и конструкции опор и устройству турбинных аппаратов. Унифицированная секция турбобура, применяемая для одно- и многосекционных турбобуров, не имеет осевой опоры, а осевые нагрузки воспринимаются опорой, расположенный в шпиндельной секции.

Унифицированная турбинная секция турбобура ЗТСШ-195 (рис. 4.1.) состоит из переводника 1, свинченного на конусной резьбе с корпусом 8, в котором находятся пакеты статоров гидротормоза 7 и турбины 10, сжимаемые регулировочными кольцами 11 и фиксируемые нижним переводником 12. Этот переводник снабжен ниппелем с конусной замковой резьбой, к которой присоединяется вторая секция турбобура или шпиндельная секция, а при транспортировке навинчивается колпак.

Вращающаяся группа деталей: регулировочное кольцо 3 втулки уплотнения 4 и распорная 5, радиальные опоры средняя и верхняя 6 и пакеты роторов гидротормоза 7 и турбины 10, закрепленные на валу секции 9 стяжной полумуфтой 2.

В многосекционных турбобурах валы секций соединяются с помощью конусных или шлицевых муфт на резьбах с небольшим углом конусности.

Турбина состоит из большого числа ступеней (до 370). Каждая ступень (рис. 4.2) состоит из статора с наружным 2 и внутренним 3 ободами, между которыми размещены лопатки 4 и ротора, обод 1 которого снабжен лопатками 5. Лопатки статора и ротора расположены под углом друг к другу, вследствие чего поток жидкости, поступающий под углом из каналов статора на лопатки ротора, меняет свое направление и давит на них. В результате этого создаются силы, стремящиеся повернуть закрепленный на валу ротор в одну сторону, а закрепленный в корпусе статор - в другую.

Далее поток раствора из каналов ротора вновь поступает на лопатки статора второй ниже расположенной ступени, на лопатки ее ротора, где вновь изменяется направление потока раствоpa. На роторе второй ступени также возникает крутящий момент. В результате раствор под действием энергии давления, создаваемой буровым насосом, расположенным на поверхности, проходит все ступени турбобура. В многоступенчатой турбине раствор движется вдоль ее оси. Активный крутящий момент, создаваемый каждым ротором, суммируется на валу, а реактивный (равный по величине и противоположный по направлению), создаваемый на лопатках статора, суммируется на корпусе турбобура.

Реактивный момент через корпус турбобура передается соединенной с ним бурильной колонне, а активный - долоту. На создание крутящего момента перепад давления, срабатываемый в турбобуре, составляет от 3 до 7 МПа, а иногда и более. Это является большим недостатком турбобура, поглощающего значительную часть энергии, создаваемую насосом и затрачивающего ее на вращение долота, а не на очистку и эффективное разрушение забоя скважины, что практически исключает возможность применения гидромониторных долот.

По устройству турбин, требующих различного расхода жидкости, турбобуры подразделяются на: низколитражные, высоконапорные, имеющие максимальную мощность, большую частоту вращения и значительный вращающий момент; среднелитражные, развивающие максимальный вращающий момент, среднюю частоту вращения при высоком расходе жидкости; высоколитражные, имеющие максимальное отношение вращающего момента к частоте вращения М/п, относительно низкую частоту вращения и повышенный расход жидкости.

По числу секций турбобуры подразделяются на односекционные, в которых турбина и опорная пята расположены в одном корпусе, и многосекционные, состоящие из нескольких турбинных секций и шпинделя с осевой опорой.

Унифицированная шпиндельная секция (рис. 4.3) представляет собой самостоятельную сборку, которую можно использовать с одно- и многосекционным турбобуром. Шпиндельная секция выполняется в двух модификациях: на упорном подшипнике качения (рис.4.3, а) и на резинометаллической опоре скольжения (рис. 4.3, б).

Все основные детали шпиндельных секций - взаимозаменяемые, что упрощает ремонт и обслуживание. Вал 3 шпинделя в нижней части имеет ниппельную часть с резьбой для присоединения переводника 9 долота. Верхний конец вала 3 снабжен конической резьбой, на которую навинчивается полумуфта 1, стягивающая регулировочные кольца 4, втулку радиальной нижней опоры 5 и внутренние кольца упорно-радиального подшипника 7 (рис. 4.3, а) или диски резинометаллической пяты 7.

К недостаткам забойных гидравлических двигателей относится также потребление значительно большего количества жидкости, чем требуется для работы долота. Более 50 лет тому назад П.П. Шумиловым было доказано, что оптимальный процесс бурения осуществляется тогда, когда на забой подается 2/3 мощности, развиваемой буровыми насосами, но эта мощность должна расходоваться долотом на разрушение породы. На привод долота и на гидравлические потери при транспортировке жидкости к забою должно расходоваться не более 1/3 мощности, развиваемой насосами на поверхности. Условия бурения скважин многообразны и единых рекомендаций быть не может, но совершенно ясно, что в каждом случае должно быть дано экономическое обоснование выбора того или иного оборудования для бурения.

4.2.1. Турбодолото

Турбодолото (рис. 4.4) - турбинный забойный двигатель, служащий для вращения колонковой головки для бурения скважин с отбором образцов породы (кернов). Оно представляет собой одно- или двухсекционный турбобур, с резинометаллической осевой опорой и пустотелым валом. Вал турбодолота имеет полость, внутри которой расположена колонковая труба - грунтоноска для приема выбуренного керна. В верхней части корпуса турбодолота помещена опора грунтоноски, имеющая конусное посадочное гнездо. Грунтоноска снабжена головкой с конусной поверхностью, на которую она садится. Благодаря этому при вращении вала турбодолота с бурильной головкой керноприемная труба не вращается.

Грунтоноска закрывает отверстие в валу, благодаря чему жидкость не проходит через него, а поступает в турбину турбодолота. Так как давление раствора в верхней части турбины больше чем в нижней, то под действием этого перепада колонковая труба прижимается к опоре, что препятствует утечке жидкости через зазор между колонковой трубой и отверстием вала. Это могло бы приводить к разрушению выбуренного керна.

В остальном, конструкция турбодолота аналогична турбобуру.

В турбодолотах типа КТДС-4 (рис.4.4) осевая опора расположена в нижней части. Эти турбодолота выпускают с наружным диаметром корпуса 172 и 195 мм, первый - для бурильных головок диаметром 190, а второй - для 214-мм головок.

Техническая характеристика колонковых турбодолот КТД-4

Шифр турбодолота 172190/48 195-214/60
Длина L ±2,5, м 9,2 10,1
Наружный диаметр, мм    
Длина грунтоноски, м:
наибольшая 8,58 9,61
наименьшая 8,43 9,46
Длина керноприемной части, м 4,01 4,9
Диаметр керна, мм    
Число ступеней    
Частота вращения вала, об/мин    
Вращающий момент, кН м 1,67 1,42
Перепад давления в турбине. МПа 7,9 6,8
Масса, т 1,133 1,61

Все турбины турбодолот имеют номинальный расход бурового раствора 0,028 м3/с при плотности ρ = 1200 кг/м3.

4.2.2. Турбобуры для забуривания наклонных скважин

Для забуривания наклонных стволов скважин турбобур с долотом должен быть поставлен в скважине под углом к вертикали. Чтобы этот угол был большим, турбобур должен быть, возможно, меньшей длины. Для этих целей применяют укороченные турбобуры-отклонители с числом ступеней 52 - 109. По конструкции они аналогичны унифицированным турбобурам и состоят из турбинной и шпиндельной секций с той разницей, что шпиндельная секция соединяется с турбинной переводником, имеющим перекос осей 1º30'. Это позволяет набирать кривизну ствола скважины. Вал турбины соединяется с валом шпинделя шарнирной муфтой, компенсирующей эксцентриситет. Корпус турбины через переводник соединяется с бурильной колонной.

4.2.3. Реактивно-турбинные агрегаты

Для бурения верхних интервалов скважин диаметром 0,394 - 1,02 м применяют реактивно-турбинные агрегаты, у которых два турбобура смонтированы параллельно и жестко соединены между собой.

Для бурения скважин в горнорудной промышленности используют реактивно-турбинные агрегаты с тремя и четырьмя турбобурами, соединенными параллельно. Такими агрегатами бурят скважины диаметром от 1,26 до 5 м.

На рис. 4.5. показан реактивно-турбинный агрегат для бурения скважин диаметром 1,02 м. Этот агрегат имеет: переводник 1, соединяющий его с бурильной колонной, траверсу 2, скрепляющую верхние части агрегата и подводящую жидкость к двум турбобурам, турбобуры 3, соединенные в средней части полухомутами 4, грузы 5,6 и 7, плиту 8, две разрезные втулки 9, кольца 10, нижнюю плиту 11 и стяжки 12. К валам турбобуров присоединены долота.

При бурении агрегат вращается бурильной колонной вокруг ее оси, а долота совершают как бы планетарное вращение вокруг осей турбобуров и оси скважины, разрушая ее забой. Нагрузка на забой создается грузами 5, 6 и 7. Разбуренная порода выносится циркулирующим потоком бурового раствора, подаваемого в скважину насосами.

Для бурения скважин с помощью РТБ используются обычные буровые установки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: