Однофазные преобразователи

Рис.1. Однофазная, однонаправленная, однопульсная схема (1Ф1Н1П)

Рис.2. Однофазная, однонаправленная, двухпульсная схема (1Ф1Н2П)

Рис.3. Однофазная, двунаправленная, двухпульсная схема (1Ф2Н2П)

В схемах рис.1–3 могут использоваться либо неуправляемые полупроводниковые диоды (), либо управляемые – тиристоры (). Управляемые преобразователи, выполненные по схемам рис.2–3, при отсутствии шунтирующих диодов могут работать и в инверторном режиме [1].

Рис.4. Схема типа 3Ф1Н3П

Вентили в схеме рис.4 (3Ф1Н3П) (или ) образуют единую коммутационную группу. Изменяя число сетевых и вентильных обмоток преобразовательного трансформатора , можно получить несколько вариантов схемы. Например, увеличивая число вентильных обмоток преобразовательного трансформатора (схема рис. 5) до шести и объединяя нулевые точки, можно увеличить число фаз на стороне вентильных обмоток и, следовательно, путем такого развития схемы, показанной на рис.4, увеличить число пульсаций преобразователя. Получим шестипульсный эквивалент схемы, показанной на рис.4, с двумя коммутационными группами.

Работа однофазных вентильных схем

1. Однополупериодная схема выпрямления

Рассмотрим простейшую схему выпрямления тока.

Рис.1. Однополупериодная схема выпрямления (а) и кривые токов и напряжений (б)

В промежутке времени (0-01) к вентилю VD подводится положительное напряжение и через вентиль протекает ток прямого направления. Этот промежуток называется проводящим полупериодом, а ток - прямым током (рис.1).

В промежутке (01-02) разность потенциалов между анодом и катодом вентиля отрицательна, и через вентиль протекает незначительный ток . Промежуток (01-02) называется непроводящим полупериодом, а ток – обратным током.

Обозначим через сопротивление вентиля в проводящем полупериоде, а через – сопротивление вентиля в непроводящем полупериоде. В промежутке (0-01) напряжение вторичной обмотки трансформатора

,

где

- падение напряжения в вентиле;

- выпрямленное напряжение на зажимах приемника энергии.

В промежутке (01-02) напряжение вторичной обмотки трансформатора

,

где - обратное напряжение на вентиле.

Для большинства типов вентилей обратный ток и падение напряжения незначительны и ими пренебрегают, тогда в проводящем полупериоде

,

а в непроводящем полупериоде

.

В любой вентильной схеме выпрямленный ток имеет пульсирующий характер и наряду с постоянной составляющей содержит переменную составляющую . Переменная составляющая представляет сумму высших гармоник выпрямленного тока. Аналогично, выпрямленное напряжение содержит постоянную и переменную составляющие.

Для схемы рис.1 примем следующие обозначения:

– мгновенные значения напряжений и токов первичных и вторичных обмоток трансформатора.

Мгновенное значение фазного напряжения вторичной обмотки трансформатора

(1)

где и – действующие значения напряжений первичной и вторичной обмоток трансформатора, и – действующие значения токов первичной и вторичной обмоток трансформатора.

Кривые выпрямленного тока и напряжения представляют собой полусинусоиды (рис.2), поэтому схема называется однополупериодной.

Рис.2. Кривые токов и напряжений в схеме рис.1

Мгновенное значение выпрямленного тока

(2)

В первом полупериоде

(3)

;

;

;

.

Замечание. При работе выпрямителя на нагрузку и в режиме непрерывного тока при работе на якорную цепь двигателя действительно предложенное выражение для средневыпрямленного напряжения: Средневыпрямленное напряжение преобразователя или постоянная составляющая выпрямленного напряжения – это отношение интеграла по кривой выпрямленного напряжения к периоду повторяемости.

(4)

откуда

(5)

Так как обычно напряжение сетевое задано, коэффициент трансформации

Постоянная составляющая выпрямленного, или анодного, тока

(6)

Амплитуда тока через вентиль

(7)

Амплитуда обратного напряжения

(8)

По полученным значениям

из каталога выбираем соответствующий вентиль с его эксплуатационными параметрами, заданными заводом-изготовителем (фирмой).

Сумма первичных и вторичных рабочих намагничивающих сил трансформатора в рассматриваемой схеме отличается от нуля, т.е. имеем магнитно-неуравновешенную систему. Постоянные намагничивающие силы создают постоянный магнитный поток, который может вызвать значительное насыщение магнитной системы, т.е. увеличение тока холостого хода, действующего значения первичного тока и, соответственно, расчетной мощности. Во избежание этого нежелательного явления магнитную систему трансформатора рассчитывают с учетом постоянной составляющей потока.

Увеличенная расчетная мощность трансформатора и наличие значительных высших гармоник в выпрямленном токе ограничивают широкое распространение рассматриваемой вентильной схемы [1,2,3,4].

2. Двухполупериодные схемы выпрямления однофазного тока

Вентильные схемы с нулевым выводом характеризуются тем, что токи во вторичных обмотках имеют одно направление и поэтому содержат постоянную и переменную составляющие. В зависимости от наличия броневой или стержневой магнитной системы для полной компенсации намагничивающих сил трансформатора обмотки следует располагать по-разному.

В дальнейшем будем рассматривать однофазную двухполупериодную однотактную схему, представленную на рис.3,а, при этом подразумевается, что в схемах рис.3,а и рис.3,б электромагнитные процессы протекают одинаково, т.е. обе схемы магнитно уравновешены.

Рис.3. Двухполупериодная однотактная вентильная схема: а – с броневой магнитной системой; б – со стержневой магнитной системой

Вторичная обмотка трансформатора имеет секции и с напряжениями и , сдвинутыми по фазе на 1800.

Для напряжений секций и трансформатора имеем

,

где – действующее значение напряжения одной секции вторичной обмотки трансформатора.

Постоянная составляющая выпрямленного напряжения

(9)

Действующие значения напряжения через коэффициент схемы

; ; (10)

Постоянная составляющая выпрямленного тока

,

а постоянная составляющая тока через один вентиль

(11)

Амплитуда тока вентиля

(12)

Когда вентиль 1 закрыт, на его катод с помощью токопроводящего вентиля 2 подается напряжение .

Поэтому обратное напряжение на вентиле

,

,

а его амплитуда

(13)

Мгновенное значение первичного тока

.

Так как ток меняется синусоидально, его действующее значение

(14)

Мощность трансформатора

(15)

Параметры трансформатора и вентилей несколько изменяются при работе выпрямителя на нагрузку , когда .

Действующее значение тока вторичной обмотки

.

Действующее значение напряжения вторичной обмотки

(16)

тогда мощность трансформатора

(17)

Амплитуда анодного тока вентиля .

Остальные параметры вентилей такие же, как и при .

Рис.4. Кривые токов и напряжений двухполупериодной однотактной вентильной схемы: – кривые токов и напряжений приведены на осях 2,3,4,5,6; - 7,8,9,10

3. Работа схемы рис.3 на активную нагрузку при углах управления

Пусть в момент времени , т.е. с задержкой на угол относительно перехода напряжения через нуль (точка естественного включения вентиля 1), на управляющий электрод вентиля подается управляющий импульс (рис.5). Тогда вентиль включится и в нагрузке начнет протекать ток под воздействием напряжения . Начиная с этого же момента, к вентилю будет приложено обратное напряжение , равное разности напряжений

двух вторичных полуобмоток.

Рис.5. Диаграммы токов и напряжений однофазного выпрямителя при активной нагрузке и угле

Вентиль будет находиться в проводящем состоянии до тех пор, пока ток, протекающий через него, не спадет до нуля. Так как нагрузка активная и форма тока, проходящего через нагрузку, повторяет форму напряжения , то вентиль включится в момент

.

Поскольку через половину периода полярность напряжения на вторичной обмотке изменяется на противоположную, то при подаче управляющего импульса на вентиль в момент

он включится. Затем указанные процессы повторяются в каждом периоде.

Угол , называемый углом управления или регулирования, отсчитывают относительно моментов естественного включения вентилей (), соответствующих моментам включения неуправляемых вентилей в схеме.

Из рис.5 видно, что с увеличением угла среднее значение выходного напряжения будет уменьшаться.

Аналитически эта зависимость будет выражаться следующей формулой:

(18)

Обозначив через найденное по выражению (9) среднее значение выпрямленного напряжения для неуправляемого выпрямителя (), получим средне выпрямленное напряжение для активной нагрузки:

(19)

Кривая 1 на рис.6 находится по выражению (19).

Среднее значение выпрямленного тока

(20)

В соответствии с (19) изменение угла от 0 до приводит к изменению среднего значения выходного напряжения от до нуля.

Зависимость среднего значения выходного напряжения от угла управления называется регулировочной характеристикой вентильного преобразователя.

Рис.6. Регулировочные характеристики однофазного двухполупериодного выпрямителя: 1 – при активной нагрузке; 2 – при активно-индуктивной нагрузке

Заштрихованная область на рис.6 соответствует семейству регулировочных характеристик при различных значениях отношения

.

Если накопленной в индуктивности энергии окажется достаточно, чтобы обеспечить протекание тока до очередной коммутации вентилей, то будет иметь место режим работы с непрерывным током . При

режим непрерывного тока будет существовать при любых углах в диапазоне от 0 до (кривая 2 на рис.6).

Работа однофазной мостовой схемы выпрямления

1. Неуправляемая схема выпрямления

Пусть имеем неуправляемую мостовую двухтактную схему рис.1.

Рис.1. Двухполупериодная мостовая схема

Как видно из рис.1 вентили включаются так, что в первом полупериоде ток протекает через вентили 1 и 3, а во втором полупериоде ток протекает через вентили 2 и 4.

Форма кривых выпрямленного, фазных и анодных токов зависит от индуктивного сопротивления . Кривые токов и напряжений при приведены на осях 2,3,4,5 и 6 рис.2.

Аналогично рассмотренной ранее однотактной схеме имеем

, .

Амплитуда обратного напряжения

.

Ток вторичной обмотки трансформатора равен

.

Поэтому действующие значения токов обеих обмоток равны:

, .

Мощность первичной и вторичной обмоток, а также типовая мощность трансформатора

.

Рис.2. Кривые токов и напряжений двухтактной схемы

Так как кривые анодных токов представляют полусинусоиды, они содержат постоянные составляющие, первые гармоники и гармоники с четными порядковыми номерами

Кривые токов при

приведены на осях 7, 8 и 9 рис.2.

Действующие значения токов первичной и вторичной обмоток при

.

Мощность трансформатора

.

Амплитуда анодного тока вентиля

.

2. Работа однофазной мостовой схемы с углом регулирования

Диаграммы токов и напряжений на элементах будут такими же, как и для однофазного двухполупериодного выпрямителя со средней точкой.

Отличие заключается только в том, что амлитуда обратного напряжения на вентиле в мостовом выпрямителе будет в 2 раза меньше, чем в двухполупериодном нулевом выпрямителе.

При активной нагрузке работа схемы будет характеризоваться следующими основными соотношениями:

Рис.3. Однофазный мостовой выпрямитель

При активной нагрузке работа схемы будет характеризоваться следующими основными соотношениями:

  • среднее значение выпрямленного напряжения

;

  • максимальное значение обратного напряжения на вентилях

;

  • максимальное значение тока вентиля

;

  • среднее значение тока вентиля

;

  • действующие значения токов, проходящих через вентили и обмотки трансформатора

; ; .

Однофазная мостовая схема, работающая с углом , имеет такие же формы токов и напряжений на ее элементах, как и в однофазном двухполупериодном выпрямителе со средней точкой.

Среднее значение выходного напряжения:

  • при активной нагрузке (рис.2, кривая 1)

,

где – среднее значение выпрямленного напряжения на выходе схемы при угле ;

  • при активно-индуктивной нагрузке, когда или имеет такое значение, что выпрямленный ток непрерывен (рис.2, кривая 2),

.

Максимальные значения напряжений на вентилях:

  • при активной нагрузке

, ;

  • при активно-индуктивной нагрузке

, .

Максимальное значение токов вентилей при активной нагрузке

.

3. Активно-индуктивная нагрузка с углом открытия больше нуля,

Наличие в цепи нагрузки индуктивности существенно изменяет характер электромагнитных процессов в схеме. Так, после начала работы выпрямителя нарастание тока в нагрузке будет происходить постепенно и тем медленнее, чем больше постоянная времени .

При наличии индуктивности выпрямленный ток становится более сглаженным и не успевает доходить до нуля в моменты, когда выпрямленное напряжение становится равным нулю.

При увеличении индуктивности или частоты переменной составляющей выпрямленного напряжения пульсации выпрямленного тока уменьшаются, а при значениях , равных 5-10 и более, расчетные соотношения в схеме будут незначительно отличатся от случая, когда или (). В этом случае можно считать, что вся переменная составляющая выпрямленного напряжения выделяется на индуктивности , а постоянная – на сопротивлении .

Несмотря на то, что управляющие импульсы поступают на вентили с задержкой на угол относительно моментов их естественного включения (), длительность протекания тока через каждый вентиль остается равной половине периода напряжения питающей сети.

При ток в цепи нагрузки идеально сглажен, а токи вентилей имеют прямоугольную форму, но в отличие от схемы, работающей с углом , прямоугольники токов будут сдвинуты относительно выпрямленного напряжения на угол . Сдвиг тока относительно напряжения на угол приводит к появлению в выпрямленном напряжении отрицательных участков, что вызывает снижение его среднего значения (рис.4).

Рис.4. Диаграммы токов и напряжений двухполупериодного выпрямителя при активно-индуктивной нагрузке и ()

Учитывая, что форма выпрямленного напряжения повторяется в интервале углов от до , среднее значение выпрямленного напряжения можно найти по формуле

(1)

Согласно (1) среднее значение выпрямленного напряжения становится равным нулю при . В этом случае в выпрямленном напряжении площади положительного и отрицательного участков равны между собой и постоянная составляющая отсутствует [1, 2].

Регулировочная характеристика для активно-индуктивной нагрузки показана на рис.5 кривая 2.

Рис.5. Регулировочные характеристики однофазного двухполупериодного выпрямителя: 1 – при активной нагрузке; 2 – при активно-индуктивной нагрузке

Если величина невелика и такова, что энергии, запасенной в индуктивности на интервале, когда , оказывается недостаточно для обеспечения протекания тока в течение половины периода, то вентиль, проводящий этот ток, выключится раньше, чем будет подан отпирающий импульс на другой вентиль, т.е. раньше момента, определяемого углом . Такой режим работы схемы при активно-индуктивной нагрузке называется режимом с прерывистым выпрямленным током (рис.6).

Рис.6. Диаграммы токов и напряжений двухполупериодного выпрямителя при режиме прерывистых токов

При одинаковых значениях угла? среднее значение выпрямленного напряжения в режиме с прерывистым током будет больше, чем в режиме с непрерывным током, благодаря уменьшению отрицательного участка в кривой выпрямленного напряжения, но меньше, чем при работе выпрямителя на активную нагрузку.

Поэтому в режимах с прерывистым током регулировочные характеристики будут находиться между кривыми 1 и 2 в заштрихованной области, указанной на рис.5.

Режим работы схемы, когда ток в вентилях спадает до нуля точно в момент включения очередного вентиля, называется граничным.

Очевидно, что чем больше угол?, тем больше должна быть индуктивность , чтобы обеспечить режим работы схемы с непрерывным током . Индуктивность, обеспечивающая при заданных параметрах–схемы граничный режим работы, называют критической.

При прерывистом токе и постоянной нагрузке трансформатор, вентили, коллектор работают в более тяжелом режиме, так как при одном и том же значении выпрямленного тока действующее значение токов в элементах схемы увеличивается. Поэтому в мощных выпрямителях, работающих с широким диапазоном изменения угла , индуктивность обычно выбирают из условия обеспечения непрерывности выпрямленного тока.

Граница перехода к непрерывному выпрямленному току зависит от соотношения

,

характеризующегося углом

.

Пока

,

режим непрерывен, а при

ток имеет прерывистый характер.

В режиме непрерывного тока постоянная составляющая выпрямленного напряжения

.

Ток вентиля в прерывистом режиме

.

Из последнего выражения видно, что когда , ток , т.е. на границе перехода от прерывистого к непрерывному режиму угол [1, 2].

Обозначив угол протекания тока через вентиль равным и подставляя в выражение

,

получим уравнение

,

дающее зависимость между углами и .

Постоянная составляющая выпрямленного напряжения

.

Постоянная составляющая выпрямленного тока в обоих случаях

.

Выпрямители с активно-индуктивной нагрузкой

1. Процессы в схемах с углом

В однофазной мостовой схеме расчетная мощность трансформатора имеет те же параметры, что и мощность в однофазной двухполупериодной со средней точкой

.

На рис.1 изображено синусоидальное напряжение источника и напряжение на нагрузке для случая отпирания управляемых вентилей в момент .

Примем индуктивность настолько большой, что ток нагрузки до момента отпирания следующей пары вентилей не успевает пройти через нуль. Когда ток через нуль не проходит, он нарастает от интервала к интервалу и устанавливается в течение ряда периодов.

Рис.1. Кривые напряжений

Управляемые вентили в выпрямителе действуют как периодические ключи, которые от полупериода к полупериоду переключают напряжение источника. С учетом их действия напряжение на нагрузке в течение n-го полупериода будет равно [1, 2]

(1)

Произвольный момент времени может быть определен по соотношению

(2)

где величина t1 изменяется от нуля до .

Очевидно также, что

(3)

Из сопоставления выражений (2) и (3) вытекает соотношение

или

.

Нетрудно видеть, что для любого целого числа n выполняется условие

,

следовательно,

(4)

Дифференциальное уравнение (4) позволяет найти ток нагрузки внутри любого интервала.

Общий интеграл уравнения имеет вид

(5)

где , , ; - угол сдвига фаз между током и напряжением нагрузки; ; – постоянная интегрирования, определяемая из начальных условий.

Предположим, что в начале -го интервала () ток был равен . Из (5) следует, что

,

откуда

.

В конце этого интервала

ток будет равен

,

т.е.

(6)

или

(7)

Это уравнение представляет собой разностное уравнение 1-го порядка.

Рассматривая соотношение (7) как рекуррентную формулу, можно вычислить все значения тока .

Для упрощения введем следующие обозначения

, .

Тогда соотношение (7) можно переписать в виде

.

Откуда при начальном условии получим

Последнее выражение представляет собой геометрическую прогрессию. Следовательно,

.

Подставляя сюда значения и , окончательно получим выражение для тока в начале -го интервала:

.

Если , то значение тока в начале любого интервала в установившемся режиме (при )

.

Представленный разностный метод позволяет получить формулу, определяющую значения тока в любой момент времени для любого интервала в любой схеме выпрямления.

2. Двухполупериодная мостовая вентильная схема с противо-ЭДС

Рассмотрим работу схемы для случая, когда приемник энергии имеет противо-ЭДС, а угол управления .

Рис.2. Вентильная мостовая схема с противо-ЭДС

Рис.3. Кривые токов и напряжений двухтактной схемы

При конечном значении моменты включения вентилей зависят от противо-ЭДС . Если , вентили не включаются, ток , а продолжительность прохождения тока через вентиль . С уменьшением угол возрастает, и в пределе, при . В зависимости от угла имеем несколько режимов работы схемы. Кривые токов и напряжений приведены на рис.3.

В режиме I угол и выпрямленный ток имеет прерывистый характер. В промежутке (0-01) включены вентили 1 и 3, а в промежутке (02-03) – вентили 2 и 4. Началом координатной системы считаем точку (0) – момент включения вентилей 1 и 3 и рассматриваем период (02=?).

Для промежутка (0-01) пишем уравнение

(8)

где – мгновенное значение напряжения на вторичной обмотке трансформатора.

Уравнение (8) можно представить в виде

.

Так как в этом промежутке , получим

(9)

где , – приведенное к вторичной обмотке сопротивление трансформатора.

Из этого уравнения (9) определяем мгновенное значение выпрямленного тока

(10)

Постоянная составляющая выпрямленного тока

В момент включения вентилей 1 и 3 напряжение вторичной обмотки трансформатора равно противо-ЭДС :

, (11)

В момент выключения вентилей 1 и 3 угол , а ток , поэтому из (10) получим

или

(12)

Из уравнений (12) и (11) определяем

.

В конце режима I угол и при соотношение должно быть таким, чтобы выполнялось условие

,

где , .

Замечание. Часто при расчетах мгновенных значений токов в схемах принимают за начальную величину и из выражений (5-7) находят постоянные интегрирования Такой подход приводит к неверному решению задачи распределения непрерывного тока в первых полупериодах. В этом случае необходимо выполнить расчеты в 5-6 полупериодах напряжения, каждый раз подставляя новое значение начальных условий. Количество расчетных полупериодов заканчивается тогда, когда мгновенное значение тока в начале полупериода будет равно току в конце полупериода.

Иногда в качестве начального значения тока берется его среднее значение в схеме с заданными параметрами. В этом случае количество расчетных полупериодов уменьшается.

Трехфазная однотактная схема выпрямления тока (трехфазная схема со средней точкой, трехфазная нулевая трехпульсная схема)

Схема (рис.1) состоит из трансформатора, трех вентилей и приемника энергии . Для уменьшения высших гармоник выпрямленного тока последовательно с сопротивлением Rd включен реактор с индуктивным сопротивлением () [1,2].

Обычно первичную обмотку трансформатора соединяют треугольником, а вторичную – звездой или первичную – звездой, а вторичную – зигзагом ().

Пусть трансформатор соединен по схеме .

Рис. 1. Трехфазная однотактная вентильная схема

В промежутке (0-01) наибольшее положительное значение, как это показано на рис. 2, имеет напряжение первой фазы , поэтому ток протекает только через вентиль 1 (), а остальные вентили заперты. Начиная с момента 01 и правее , анод вентиля 2 оказывается под положительным напряжением относительно катода. Если в момент 01 на вентиль 2 поступает отпирающий импульс, он включается, а анодное напряжение вентиля 1 (), и этот вентиль выключается (рис.2).

Замечание. Если по какой-нибудь причине вентиль 2 не включится, то вентиль 1 выключится не в точке 01, а позже. Следовательно, причиной выключения вентиля 1 в точке 01 является включение очередного вентиля 2.

В промежутке (01-02) ток пропускает вентиль 2. В точке 02 включается вентиль 3 и выключается вентиль 2 и т.д. Каждый вентиль пропускает ток в течение периода, равного 1200(), поэтому число пульсаций выпрямленного напряжения равно трем.

Рис. 2. Кривые токов и напряжений при ()

Когда выключен вентиль 1, к нему на интервале проводимости вентиля 2 приложено линейное напряжение , а на интервале проводимости вентиля 3 – напряжение .

Среднее значение выпрямленного напряжения найдем путем интегрирования напряжения на вторичной обмотке трансформатора в интервале повторяемости формы выпрямленного напряжения:

(1)

где – действующее значение фазного напряжения на вторичной обмотке трансформатора.

Зная напряжение первичной сети , находим коэффициент трансформации:

.

Постоянная составляющая выпрямленного тока

,

а постоянная составляющая тока одного вентиля

.

Амплитуда анодного тока вентиля

(2)

Когда вентиль заперт, на его зажимах действует линейное напряжение вторичной обмотки трансформатора, поэтому амплитуда обратного напряжения

.

При выпрямленный ток идеально сглажен и кривые фазных токов имеют прямоугольную форму (рис.3). В этом случае кривые выпрямленного напряжения Ud и обратные напряжения на вентилях остаются такими же, как и при работе на активную нагрузку, а значения токов становятся равными (действующее значение тока вторичной обмотки):

(3)

Рис.3. Кривые токов при

По кривой первичного фазного тока (ось 4) определяем его среднее значение

(4)

По кривой первичного линейного тока (рис.3, ось 6) находим его действующее значение

(5)

Полученные выражения справедливы для любого способа соединения первичной обмотки трансформатора (звездой или треугольником).

На рис.4 приведена трехфазная однотактная вентильная схема, в которой вторичная обмотка трансформатора соединена зигзагом. На каждом стержне магнитной системы, кроме первичной обмотки, расположены две секции вторичной обмотки, в которых протекают токи противоположного направления. Поэтому взаимно компенсируются магнитные силы, соответствующие постоянным составляющим этих токов, а также гармоникам с порядковыми номерами, кратными трем, и схема магнитно уравновешена.

Рис.4. Трехфазная вентильная схема «звезда – зигзаг»

Пусть угол управления . Отпирающие импульсы приходят на вентили поочередно с задержкой на угол управления относительно моментов прохождения через ноль синусоид линейных напряжений вторичных обмоток трансформатора. При угле в зависимости от характера нагрузки и значения угла в данной схеме могут иметь место различные режимы работы (рис.5).

Если угол изменяется в диапазоне от 0 до , то как при активно-индуктивной, так и при чисто активной нагрузке выпрямленный ток является непрерывным. Среднее значение выпрямленного напряжения в этой области углов при различном характере нагрузки описывается одним аналитическим выражением:

Рис.5. Диаграммы токов и напряжений при

(6)

При угле кривая мгновенных значений выпрямленного напряжения доходит в моменты переключения вентилей до нуля. Такой режим работы называется гранично-непрерывным.

Дальнейшее увеличение угла при активной нагрузке приводит к прерыванию выпрямленного тока id и появлению в выпрямленном напряжении ud участков с нулевым значением (рис.6,б). Интервал проводимости тока вентиля становится меньше .

Среднее значение напряжения в этом случае выражается следующим образом (кривая 1 на рис.7):

(7)

Рис.6. Диаграммы токов и напряжений при углах и

При активно-индуктивной нагрузке за счет энергии, запасаемой в индуктивности , выпрямленный ток продолжает протекать в нагрузке и при переходе выпрямленного напряжения в зону отрицательных значений. Если накопленной в индуктивности энергии окажется достаточно, чтобы обеспечить протекание тока до очередной коммутации вентилей, то будет наблюдаться режим работы с непрерывным током .

При режим непрерывного тока будет иметь место при любых углах в диапазоне от 0 до . В этом случае среднее значение выходного напряжения можно определить по формуле

(3.8)

Когда угол становится равным , площади положительного и отрицательного участков кривой выпрямленного напряжения становятся равными, что свидетельствует об отсутствии постоянной составляющей в выпрямленном напряжении, или, иначе говоря, среднее значение Ed становится равным нулю (кривая 2 на рис.7).

Рис.7. Регулировочные характеристики трехфазного нулевого выпрямителя:.1 – при активной нагрузке; 2 – при активно-индуктивной нагрузке

Заштрихованная область соответствует семейству регулировочных характеристик в режимах прерывистого тока id при различных значениях отношения Ld/Rd.

Примем индуктивность Ld настолько большой, ток нагрузки i до момента отпирания следующего вентиля не успевает пройти через нуль. Когда ток через нуль не проходит, он нарастает от интервала к интервалу и устанавливается в течение ряда периодов.

В трехфазной нулевой (однотактной, ) схеме к нагрузке подключено напряжение

,

где , а угол естественного включения вентилей при составляет .

Ток через нагрузку определяется дифференциальным уравнением

(9)

Общий интеграл решения уравнения (9)

(10)

где ; - угол нагрузки; – постоянная интегрирования, определяемая в каждом конкретном случае из начальных условий.

Для определения тока в любом интервале времени удобно воспользоваться разностными уравнениями.

В общем случае к нагрузке может быть подключено напряжение с противо-ЭДС:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow